Geotechnical Data Report Wastewater Treatment Plant Improvements Additional Wells Wasilla, Alaska

June 2018

Submitted To:

Stantec

725 East Fireweed Lane, Suite 200 Anchorage, Alaska 99503 Phone: (907)276-4245

By:

Shannon & Wilson, Inc.

5430 Fairbanks Street, Suite 3 Anchorage, Alaska 99518 Phone: (907)561-2120 Fax: (907)561-4483 E-mail: <u>klb@shanwil.com</u>

32-1-02452-003

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
2.0	SITE AND PROJECT DESCRIPTION	1
3.0	SUBSURFACE EXPLORATIONS	2
4.0	LABORATORY TESTING	4
5.0	SUBSURFACE CONDITIONS	4
6.0	CLOSURE AND LIMITATIONS	6

FIGURES

1	Vicinity	Map
---	----------	-----

- 2 Site Plan
- 3 Generalized Soil Profile N-N'
- 4 Generalized Soil Profile W-W'

APPENDICES

- A Boring Logs and Laboratory Test Results
- B June 2016 Revised Geotechnical Data Report
- C Important Information About Your Geotechnical/Environmental Report

GEOTECHNICAL DATA REPORT WASTEWATER TREATMENT PLANT IMPROVEMENTS ADDITIONAL WELLS WASILLA, ALASKA

1.0 INTRODUCTION

This report presents the results of subsurface explorations and laboratory testing by Shannon & Wilson, Inc. for the proposed improvements to the existing Wastewater Treatment Plant in Wasilla, Alaska. The purpose of this geotechnical study was to supplement existing subsurface data in the pilot study area adjacent to the existing wastewater treatment plant (WWTP) in Wasilla, Alaska. To accomplish this, a total of eight borings were drilled and completed with monitoring wells. Soil samples recovered from the borings were tested in our geotechnical laboratory. Presented in this report are descriptions of the site and project, subsurface exploration and laboratory test procedures, and an interpretation of subsurface conditions. Shannon & Wilson has provided support during prior phases of this project which were submitted in our May 2008 *Geotechnical Report, Wastewater Treatment Plant Percolation Cell, Wasilla, Alaska*, June 2016 *Revised Geotechnical Data Report*, and October 2016 *Revised Geotechnical Engineering and Hyrdogeologic Assessment*. We have included the June 2016 data report in this deliverable for ease of review.

Authorization to proceed with this work was received in the form of a Subconsultant Agreement, signed by Mr. Dean Syta, P.E. of Stantec on February 9, 2018. Our work was conducted in general accordance with our January 4, 2018 proposal.

2.0 SITE AND PROJECT DESCRIPTION

The existing Wastewater Treatment Plant is located on Jude Drive in Wasilla, Alaska. The existing facility consists of several buildings, a four-cell aerated lagoon system, and nine percolation beds. The proposed improvements include an overland percolation and wetland/bioswale-type treatment area in a 70 acre parcel to the west of the existing facility.

Generally, the developed portion of the facility slopes down to the west and south with an approximately 90-foot tall bluff on the west side of the wetlands. The existing buildings and facilities are at an approximate elevation of 250 feet and directly west of the facility lies the

existing sewage lagoons which are at an approximate elevation of 245 feet. The elevation drops to the west to approximately 208 feet in the wetland treatment area, which also slopes down to the south toward a stream and the proposed new point of compliance. The tall bluff is west of the wetland area and rises steeply up with an elevation increase of approximately 90 feet. A residential neighborhood is located atop the bluff and to the west of the project area. At the time of explorations, the project area was thick with vegetation including mature trees and brush (with the exception of the existing developed wastewater facility buildings and lagoons). The low lying proposed wetland treatment area was frozen with snow accumulation of six inches to one foot.

We understand that these additional monitoring wells will support subsurface water sampling to be conducted by Stantec. In addition to the explorations conducted for this field effort, which are included in Appendix A, the results of our previous work are presented in our report entitled *Revised Geotechnical Data* Report dated June 2016, provided in Appendix B.

3.0 SUBSURFACE EXPLORATIONS

Subsurface explorations for this additional monitoring well installation effort consisted of drilling and sampling eight soil borings, designated Borings MW-2B, MW-10, MW-12, MW-13, MW-15 through MW-17, and MW-20 (boring designations provided by Stantec). Borings MW-2B and MW-13, are replacing borings advanced in 2015 due to damage to the piezometers. They were drilled adjacent to the original borings (Borings B-2 and B-13). The remaining borings were at new locations, with three in the lowlying wetland area, two in the upland area to the north, and one on the bluff along the western edge of the project area. The borings were advanced and the monitoring wells were installed in March of 2018. The approximate locations of the additional monitoring wells (as well as the 2015 borings) are identified on Figure 2. Summary logs of the borings are provided in Appendix A.

The eight borings were advanced to depths ranging between 21.5 and 126.3 feet bgs. The boring locations were recorded using a handheld global positioning system (GPS) with an accuracy of \pm 20 feet. Elevations were estimated from topographic contours provided by the Matanuska Susitna Borough (MSB) interactive map website. The locations shown on Figure 2 and the elevations reported on the boring logs should be considered approximate. An experienced representative from our firm was present continuously during drilling to locate the borings,

observe drill action, collect soil and water samples, log subsurface conditions, observe installation of monitoring wells, and observe groundwater levels.

Drilling services for this project were provided by Denali Drilling, of Anchorage, Alaska, using a track-mounted CME-850 drill rig. The borings were advanced with 4¹/₄-inch inner diameter (ID) hollow stem auger, with the exception of Boring MW-20 which was advanced with an ODEX air hammer. Soil samples were generally collected at 2.5-foot intervals to 10 feet bgs and at 5-foot intervals thereafter using the Modified Penetration Test (MPT) method, with the exception of Boring MW-20 which had a 10-foot sample interval to 80 feet bgs and a 5-foot sample interval to the bottom of the boring. In the MPT method, samples are recovered by driving a 3-inch outer diameter (OD) split-spoon sampler into the bottom of the advancing hole with blows of a 340-pound hammer free falling 30 inches onto the drill rods. For each sample, the number of blows required to drive the sampler the final 12 inches of an 18-inch penetration into undisturbed soil is recorded. When the sampler did not penetrate the full 18 inches, we reported the total blow count and corresponding penetration in inches on the boring logs. Blow counts are shown graphically on the boring log figures as "penetration resistance" and are displayed adjacent to sample depth. The penetration resistance values give a measure of the relative density (compactness) or consistency (stiffness) of cohesionless or cohesive soils, respectively.

Samples recovered during drilling were visually classified according to the classification system presented in Appendix A, Figure A-1. The field soil classifications were verified through laboratory analysis for selected samples. Frost classifications included on the logs in Appendix A were based on sieve/P-200 data. The frost classification system is presented in Appendix A, Figure A-2. Summary logs of the borings are presented in Appendix A, Figures A-3 through A-10.

Borings were completed with monitoring wells, which were constructed from 2-inch diameter schedule 40, polyvinyl chloride (PVC) pipe with threaded connections and 10 feet of 0.010 slotted Schedule 40 PVC well screen. Silica sand was used to backfill around the well screen and hydrated bentonite chips were used to backfill above the sand. Gravel or drill cuttings were used to backfill from the sand to the ground surface. The PVC was allowed to stick up above ground level. The approximate boring locations (completed with monitoring wells) are shown on the site plan in Figure 2.

WWTP Geotechnical Data Report.docx

4.0 LABORATORY TESTING

Laboratory tests were performed on selected samples recovered from the borings to confirm field classifications and to estimate the index properties of the typical materials encountered in the borings. The laboratory testing was formulated with emphasis on estimating the material gradation and in-situ water content.

Water content tests were performed in general accordance with ASTM International (ASTM) D2216. The results of the water content measurements are presented graphically on the boring logs in Appendix A.

Grain size classification (gradation) testing was performed to estimate the particle size distribution of selected samples from the borings. The gradation testing generally followed the procedures described in ASTM C136/117 and D422. The test results are presented in Appendix A as Figure A-11 (4 sheets), and summarized on the boring logs as percent gravel, percent sand, and percent fines. Percent fines on the boring logs are equal to the sum of the silt and clay fractions indicated by the percent passing the No. 200 sieve.

In addition, we conducted tests on selected samples to estimate the amount of material passing the No. 200 sieve (P-200). The P-200 test provides an estimate of the fines (silt and clay) content. These tests were performed in general accordance with ASTM C117. The results of these tests are indicated as percent fines on the boring logs.

5.0 SUBSURFACE CONDITIONS

The subsurface conditions encountered at the site are depicted in detail on the boring logs in Appendix A. In general, subsurface conditions encountered during this effort of explorations are in agreement with the previous work by Shannon & Wilson in 2016. Generalized soil profiles are included as Figures 3 and 4.

Borings MW-2B, MW-12, MW-16, and MW-17 were advanced within the lowlying wetland area and generally encountered decomposed and fibrous organic material overlying granular material interbedded with occasional silt layers. The uppermost layer encountered was approximately 14 to 28 feet of very soft to soft brown decomposed organic soil. Blow counts were typically less than 5 blows per foot (bpf) while sampling within this layer and sample

WWTP Geotechnical Data Report.docx

recovery was difficult. Boring MW-2B encountered an approximately 6 foot thick ash layer from approximately 18 to 23.8 feet bgs. The ash was very loose with a moisture content of 278 percent.

Borings MW-10 and MW-15 were advanced in the upland area north of the lowlying wetland area. Boring MW-10 encountered 5 feet of organic soil at the surface overlying interbedded silt and silty sand. Boring MW-15 encountered silty sands and silty gravels. Occasional organics were observed in Boring MW-10 from approximately 13 to 15.7 feet bgs and in the upper 10 feet of Boring MW-15.

Boring MW-20 was advanced in the bluff area west of the wetland and encountered granular material with varying amounts of silt along with a dense to very dense silt layer from approximately 45 to 83 feet bgs.

All eight borings encountered 6 inches to 2 feet of frozen soil below the ground surface. Blow counts in the fine grained layers ranged from 0 to 25 bpf, with the average at approximately 8 bpf. Moisture content in the silt material ranged from 7 to 34 percent, with the average at approximately 18 percent moisture. Granular material found within our borings consisted of sand and gravel with varying amounts of silt. Granular material was generally medium dense to very dense with the exception of loose zones found between approximately 5.5 and 9.5 feet bgs and 23 and 26.5 feet bgs in Boring MW-10, between approximately 24 and 26 feet bgs in Boring MW-12, and between approximately 0 and 10 feet bgs and 18 and 21.5 feet bgs in Boring MW-15. Blow counts within the granular material ranged from 2 bpf to more than 85 bpf with the average at approximately 14 bpf, and moisture content ranged from 3 to 36 percent with the average at approximately 12 percent. Fines content within the granular soils ranged from 5 to 45 percent with the average at approximately 22 percent.

Groundwater was encountered during drilling between 0 (at the surface) and 0.5 feet bgs for the borings in the lowlying wetland area (Borings MW-2B, MW-12, MW-13, MW-16, and MW-17). Groundwater was encountered during drilling between 18 and 23 feet bgs for Borings MW-10 and MW-15 in the upland area north of the wetland. Boring MW-20 on the bluff west of the wetland encountered groundwater during drilling at 110 feet bgs. Borings MW-2, MW-10, and MW-15 encountered artesian flow during drilling. Boring MW-2 was abandoned due to the flow

WWTP Geotechnical Data Report.docx

and re-drilled as MW-2B, which completed with a monitoring well. Boring MW-10 was the only one that continued to experience flow after drilling and PVC placement was completed. Note that groundwater levels may fluctuate by several feet seasonally, or during periods of high precipitation or rapid snowmelt.

6.0 CLOSURE AND LIMITATIONS

This report was prepared for the exclusive use of our client and their representatives for evaluating the site as it relates to the geotechnical aspects discussed herein. The conclusions contained in this report are based on site conditions as they presently exist. It is assumed that the exploratory borings are representative of the subsurface conditions throughout the site, i.e., the subsurface conditions everywhere are not significantly different from those disclosed by the explorations.

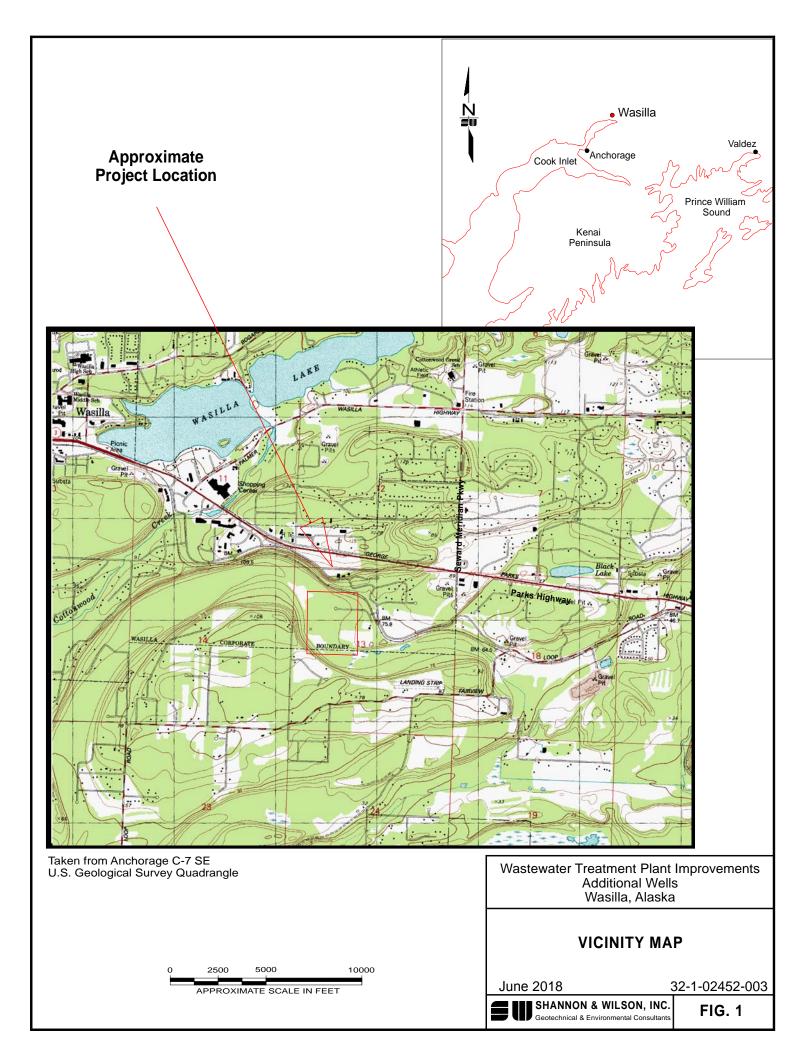
If, during construction, subsurface conditions different from those encountered in these are observed or appear to be present, Shannon & Wilson, Inc. should be advised at once so that these conditions can be reviewed where necessary. If there is a substantial lapse of time between the submittal of this report and the start of work at the site, or if conditions have changed due to natural causes or construction operations at or adjacent to the site, it is recommended that this report be reviewed to determine the applicability of the conclusions considering the changed conditions and time lapse.

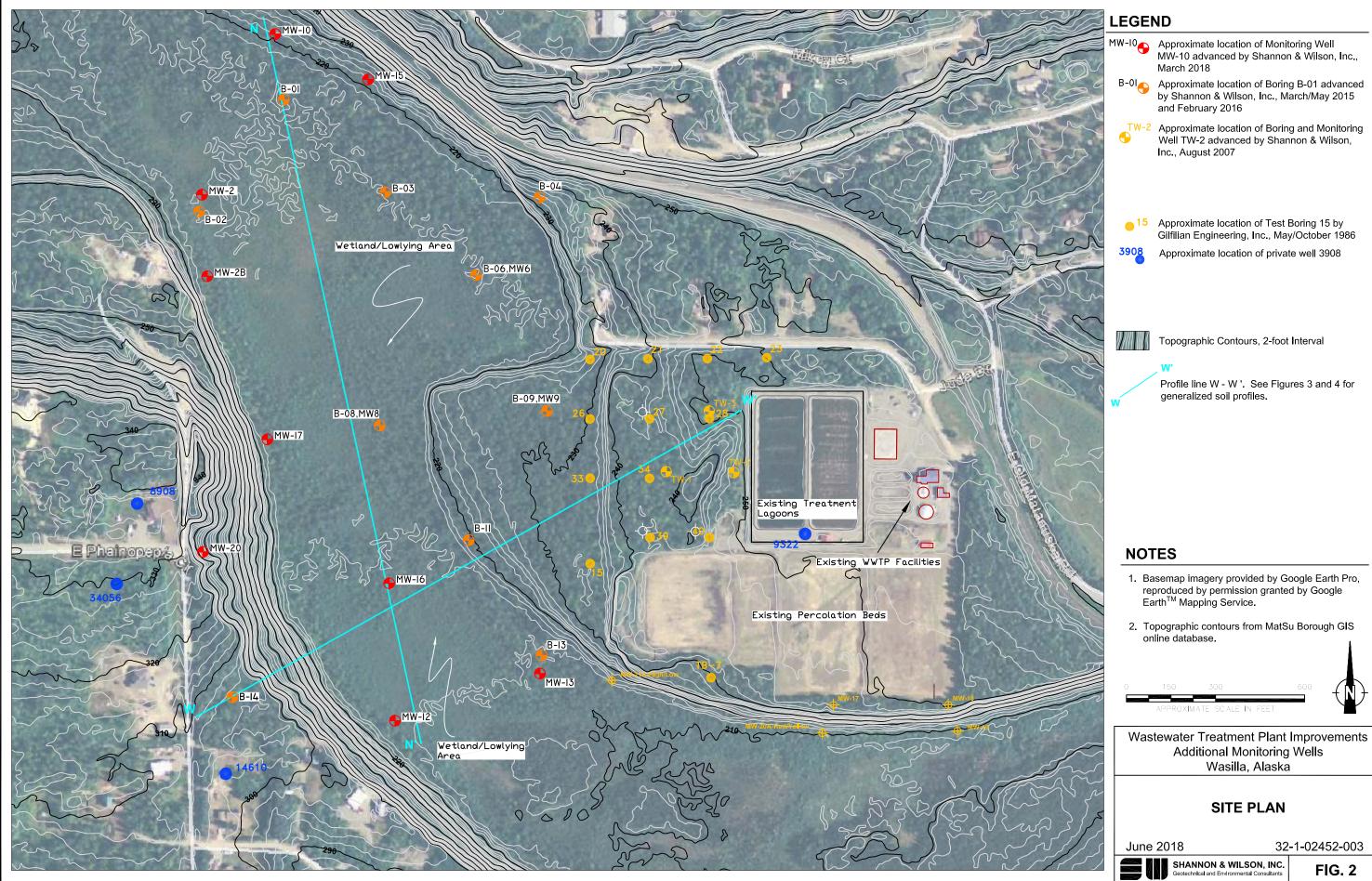
Unanticipated soil conditions are commonly encountered and cannot fully be determined by merely taking soil samples or advancing borings. Such unexpected conditions frequently require that additional expenditures be made to attain a properly constructed project. Therefore, some contingency fund is recommended to accommodate such potential extra costs.

The scope of our geotechnical services did not include evaluating potential impacts to natural resources, including wetlands, endangered species, or environmentally critical areas.

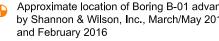
Shannon & Wilson has prepared the attachments in Appendix C *Important Information About Your Geotechnical/Environmental Report* to assist you and others in understanding the use and limitations of the reports.

Copies of documents that may be relied upon by our client are limited to the printed copies (also known as hard copies) that are signed or sealed by Shannon & Wilson with a wet, blue ink signature. Files provided in electronic media format are furnished solely for the convenience of the client. Any conclusion or information obtained or derived from such electronic files shall be at the user's sole risk. If there is a discrepancy between the electronic files and the hard copies, or you question the authenticity of the report please contact the undersigned.

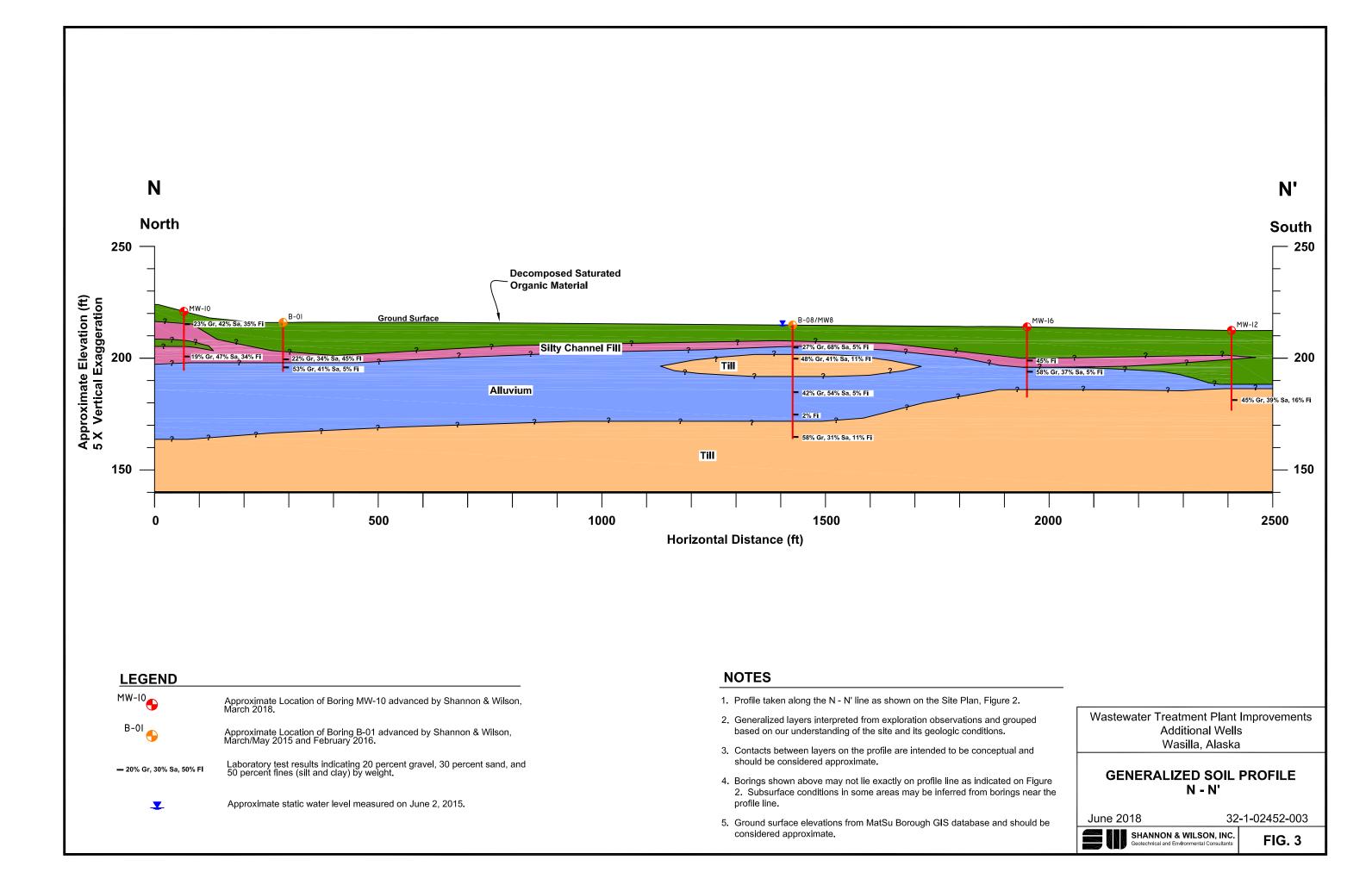

We appreciate this opportunity to be of service. Please contact the undersigned at (907) 561-2120 with questions or comments concerning the contents of this report.

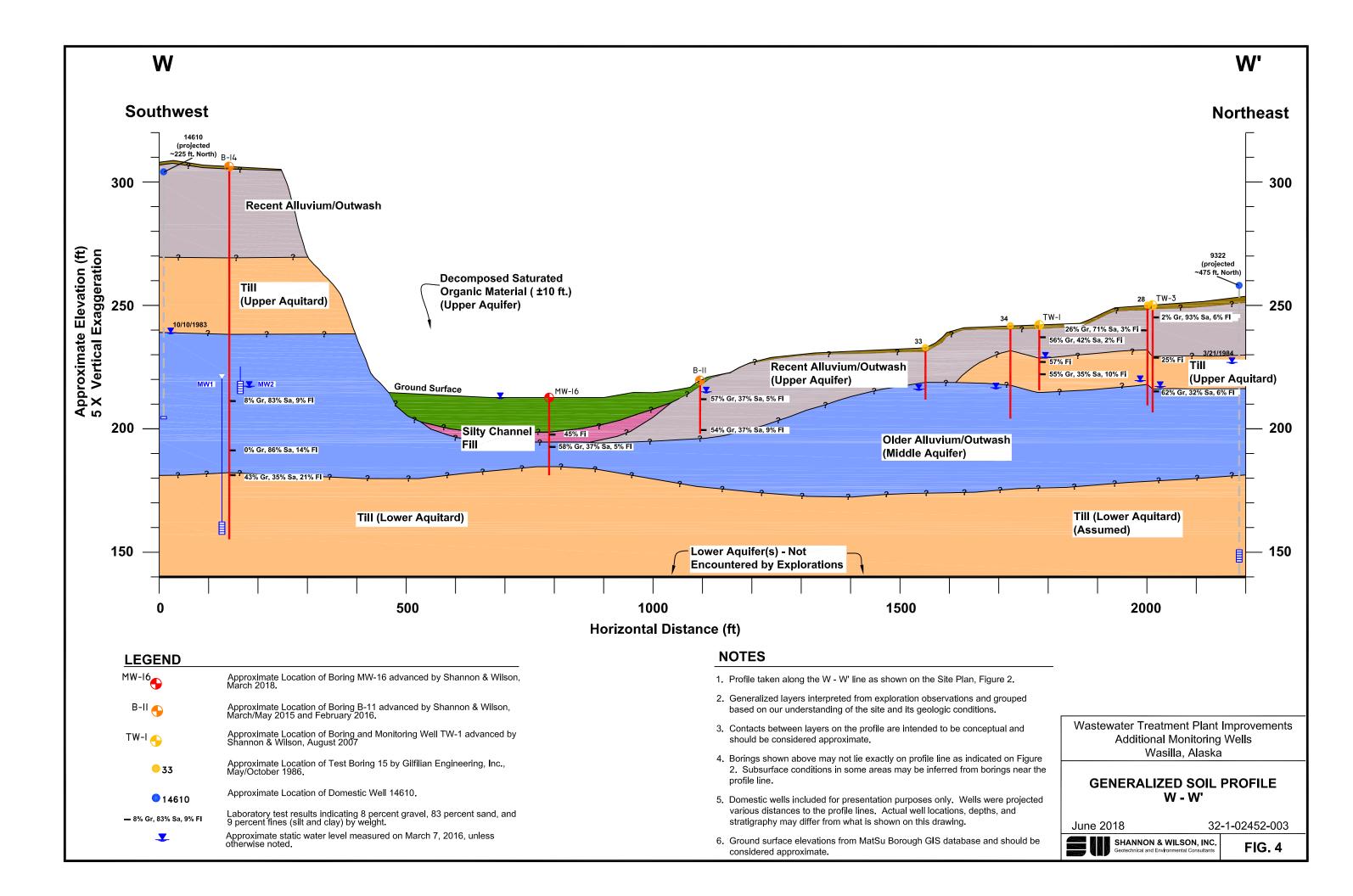

SHANNON & WILSON, INC.

Senior Geologist



Kyle Brennan, P.E. Vice President





Profile line W - W '. See Figures 3 and 4 for

- 1. Basemap imagery provided by Google Earth Pro,
- 2. Topographic contours from MatSu Borough GIS

APPENDIX A

BORING LOGS AND LABORATORY TEST RESULTS

FIGURES

A-1	Soil Description and Log Key
A-2	Frost Classification System
A-3	Log of Boring MW-2B
A-4	Log of Boring MW-10
A-5	Log of Boring MW-12
A-6	Log of Boring MW-13
A-7	Log of Boring MW-15
A-8	Log of Boring MW-16
A-9	Log of Boring MW-17
A-10	Log of Boring MW-20
A-11	Grain Size Classification

Shannon & Wilson, Inc. (S&W), uses a soil identification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following pages. Soil descriptions are based on visual-manual procedures (ASTM D2488) and laboratory testing procedures (ASTM D2487), if performed.

S&W INORGANIC SOIL CONSTITUENT

DEFINITIONS						
CONSTITUENT	FINE-GRAINED SOILS (50% or more fines)	COARSE-GRAINED SOILS (less than 50% fines)				
Major	Silt, Lean Clay, Elastic Silt, or Fat Clay ³	Sand or Gravel ⁴				
Modifying (Secondary) Precedes major constituent	30% or more coarse-grained: Sandy or Gravelly ⁴	More than 12% fine-grained: Silty or Clayey ³				
Minor	15% to 30% coarse-grained: <i>with Sand</i> or <i>with Gravel</i> ⁴	5% to 12% fine-grained: <i>with Silt</i> or <i>with Clay</i> ³				
Follows major constituent	30% or more total coarse-grained and lesser coarse- grained constituent is 15% or more: with Sand or	15% or more of a second coarse- grained constituent: <i>with Sand</i> or <i>with Gravel</i> ⁵				
with Gravel* ¹ All percentages are by weight of total specimen passing a 3-inch siever ² The order of terms is: Modifying Major with Minor.						
³ Determined based on behavior. ⁴ Determined based on which constituent comprises a larger percentag						

Determined based on which constituent comprises a larger percentage. ⁵Whichever is the lesser constituent.

MOISTURE CONTENT TERMS

- Dry Absence of moisture, dusty, dry to the touch
- Moist Damp but no visible water
- Wet Visible free water, from below water table

STANDARD PENETRATION TEST (SPT) SPECIFICATIONS

Hammer:	140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-diam. cathead 2-1/4 rope turns, > 100 rpm		
	NOTE: If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for efficiency of hammer.		
Sampler:	10 to 30 inches long Shoe I.D. = 1.375 inches Barrel I.D. = 1.5 inches Barrel O.D. = 2 inches		
N-Value:	Sum blow counts for second and third 6-inch increments. Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches.		
NOTE: Penetration resistances (N-values) shown of boring logs are as recorded in the field and have not been corrected for hammer efficiency, overburden, or other factors.			

PARTICLE SIZE DEFINITIONS

DESCRIPTION	SIEVE NUMBER AND/OR APPROXIMATE SIZE
FINES	< #200 (0.075 mm = 0.003 in.)
SAND Fine Medium Coarse	#200 to #40 (0.075 to 0.4 mm; 0.003 to 0.02 in.) #40 to #10 (0.4 to 2 mm; 0.02 to 0.08 in.) #10 to #4 (2 to 4.75 mm; 0.08 to 0.187 in.)
GRAVEL Fine Coarse	#4 to 3/4 in. (4.75 to 19 mm; 0.187 to 0.75 in.) 3/4 to 3 in. (19 to 76 mm)
COBBLES	3 to 12 in. (76 to 305 mm)
BOULDERS	> 12 in. (305 mm)

RELATIVE DENSITY / CONSISTENCY

COHESION	ILESS SOILS	COHES	
N, SPT, RELATIVE BLOWS/FT. <u>DENSITY</u>		N, SPT, <u>BLOWS/FT.</u>	RELATIVE CONSISTENCY
< 4 Very loose		< 2	Very soft
4 - 10	Loose	2 - 4	Soft
10 - 30	Medium dense	4 - 8	Medium stiff
30 - 50	Dense	8 - 15	Stiff
> 50	Very dense	15 - 30	Very stiff
		> 30	Hard

WELL AND BACKFILL SYMBOLS

Bentonite Cement Grout	Surface Cement Seal
Bentonite Grout	Asphalt or Cap
Bentonite Chips	Slough
Silica Sand	Inclinometer or Non-perforated Casing
Perforated or Screened Casing	Vibrating Wire Piezometer

PERCENTAGES TERMS^{1, 2}

< 5%
5 to 10%
15 to 25%
30 to 45%
50 to 100%

¹Gravel, sand, and fines estimated by mass. Other constituents, such as organics, cobbles, and boulders, estimated by volume.

²Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

allorial,				
	Wastewater Treatment Plant Ir	nprovements		
	Additional Wells			
	Wasilla, Alaska			
	SOIL DESCRIPTION AND LOG KEY			
	June 2018 3	2-1-02452-003		
	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG. A-1		

Sheet 1 of 3

2013 BORING CLASS1 GINT.GPJ SWNEW.GDT 5/2/18

MAJOR DIVISIONS			GROUP/GRAPHIC SYMBOL		TYPICAL IDENTIFICATIONS		
		Gravel	GW		Well-Graded Gravel; Well-Graded Gravel with Sand		
	Gravels (more than 50%	(less than 5% fines)	GP		Poorly Graded Gravel; Poorly Grade Gravel with Sand		
	of coarse fraction retained on No. 4 sieve)	Silty or Clayey Gravel	GM		Silty Gravel; Silty Gravel with Sand		
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey Gravel; Clayey Gravel with Sand		
(more than 50% retained on No. 200 sieve)	Sands (50% or more of coarse fraction passes the No. 4 sieve)	Sand	sw		Well-Graded Sand; Well-Graded Sa with Gravel		
		(less than 5% fines)	SP		Poorly Graded Sand; Poorly Graded Sand with Gravel		
		Silty or Clayey Sand (more than 12% fines)	SM		Silty Sand; Silty Sand with Gravel		
			SC		Clayey Sand; Clayey Sand with Gra		
	Silts and Clays (liquid limit less than 50)	Inorgania	ML		Silt; Silt with Sand or Gravel; Sandy Gravelly Silt		
		inorganic	CL		Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravely Lean Clay		
FINE-GRAINED SOILS (50% or more		Organic	OL		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay		
passes the No. 200 sieve)	Silts and Clays (liquid limit 50 or more)	Inorganic	мн		Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravely Elastic Si		
			СН		Fat Clay; Fat Clay with Sand or Gravel; Sandy or Gravely Fat Clay		
		Organic	он		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay		
HIGHLY- DRGANIC SOILS		ic matter, dark in organic odor	PT		Peat or other highly organic soils (se ASTM D4427)		

NOTE: No. 4 size = 4.75 mm = 0.187 in.; No. 200 size = 0.075 mm = 0.003 in.

NOTES

1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., SP and SM).

2. Borderline symbols (symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups. Wastewater Treatment Plant Improvements Additional Wells Wasilla, Alaska

SOIL DESCRIPTION AND LOG KEY

June 2018

32-1-02452-003

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 2 of 3

	GRADATION TERMS	~*	-	
Poorly Grad	ded Narrow range of grain sizes preser	nt		
	or, within the range of grain sizes present, one or more sizes are			
	missing (Gap Graded). Meets crite	eria		Di
	in ASTM D2487, if tested.			E
Well-Grad	ded Full range and even distribution of grain sizes present. Meets criteria			
	ASTM D2487, if tested.			F
Weak	Crumbles or breaks with handling or			Ho
Weak	slight finger pressure			'
Moderate	Crumbles or breaks with considerabl	е		
Strong	finger pressure			
Strong	Will not crumble or break with finger pressure			
	PLASTICITY			
	APP	POV	7	N
	PLAS	-		
	IND	DEX		
		NGE	_	
Nonplastic	A 1/8-in. thread cannot be rolled < at any water content.	4		
Low		o 10		
	a lump cannot be formed when			
Medium	drier than the plastic limit. A thread is easy to roll and not 10 to	o 20		P
Medium	much time is required to reach the	0 20		
	plastic limit. The thread cannot			p
	be rerolled after reaching the			_
	plastic limit. A lump crumbles when drier than the plastic limit.			F
High	It take considerable time rolling >2	20		
5	and kneading to reach the plastic			5
	limit. A thread can be rerolled			US
	several times after reaching the plastic limit. A lump can be			
	formed without crumbling when			V
	drier than the plastic limit.			V
	ADDITIONAL TERMS			W
Mottled	Irregular patches of different colors.			W
Bioturbated	Soil disturbance or mixing by plants or			
Diotarbated	animals.	_		
			Interb	edded
Diamict	Nonsorted sediment; sand and gravel in silt and/or clay matrix.		Lam	inated
0	·			
Cuttings	Material brought to surface by drilling.		Fis	ssured
Slough	Material that caved from sides of			
5	borehole.		Slicke	nsided
Sheared	Disturbed texture, mix of strengths.			Blocky
	ANGULARITY AND SHAPE TERMS			
			1	ensed
Angular	Sharp edges and unpolished planar surfaces.			
Subangular	Similar to angular, but with rounded	ŀ	lomoge	eneous
	edges.			
Subrounded	Nearly planar sides with well-rounded			
	edges.			Г
Rounded	Smoothly curved sides with no edges.			
Roundou	chiesting surved sides with he suges.			
Flat	Width/thickness ratio > 3.			
Elongated	Length/width ratio > 3.			
eprinted, with pe	rmission, from ASTM D2488 - 09a Standard F	ractio	e for	
escription and Ide	entification of Soils (Visual-Manual Procedure)	, copy	right	
	l, 100 Barr Harbor Drive, West Conshohocken			A
opy of the comple ww.astm.org.	te standard may be obtained from ASTM Inter	natioi	idi,	
	nission, from ASTM D2488 - 09a Standard Pr	actice	for	\vdash
	entification of Soils (Visual-Manual Procedure)			

ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A

- Interio

when the men

ACRONYMS AND ABBREVIATIONS

ATD	At Time of Drilling
Diam.	Diameter
Elev.	Elevation
ft.	Feet
FeO	Iron Oxide
gal.	Gallons
Horiz.	Horizontal
HSA	Hollow Stem Auger
I.D.	Inside Diameter
in.	Inches
lbs.	Pounds
MgO	Magnesium Oxide
mm	Millimeter
MnO	Manganese Oxide
NA	Not Applicable or Not Available
NP	Nonplastic
O.D.	Outside Diameter
OW	Observation Well
pcf	Pounds per Cubic Foot
PID	Photo-Ionization Detector
PMT	Pressuremeter Test
ppm	Parts per Million
psi	Pounds per Square Inch
PVC	Polyvinyl Chloride
rpm	Rotations per Minute
SPT	Standard Penetration Test
USCS	Unified Soil Classification System
q_u	Unconfined Compressive Strength
VWP	Vibrating Wire Piezometer
Vert.	Vertical
WOH	Weight of Hammer
WOR	Weight of Rods
Wt.	Weight
S	RUCTURE TERMS
dod Alto	reating lowers of varying material or color

Interbedded	Alternating layers of varying material or color with layers at least 1/4-inch thick; singular: bed.
Laminated	Alternating layers of varying material or color with layers less than 1/4-inch thick; singular: lamination.
Fissured	Breaks along definite planes or fractures with little resistance.
Slickensided	Fracture planes appear polished or glossy; sometimes striated.
Blocky	Cohesive soil that can be broken down into small angular lumps that resist further breakdown.
Lensed	Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay.
omogeneous	Same color and appearance throughout.

Wastewater Treatment Plant Improvements Additional Wells Wasilla, Alaska

SOIL DESCRIPTION AND LOG KEY

June 2018

32-1-02452-003

s FIG. A-1 Sheet 3 of 3

FROST CLASSIFICATION

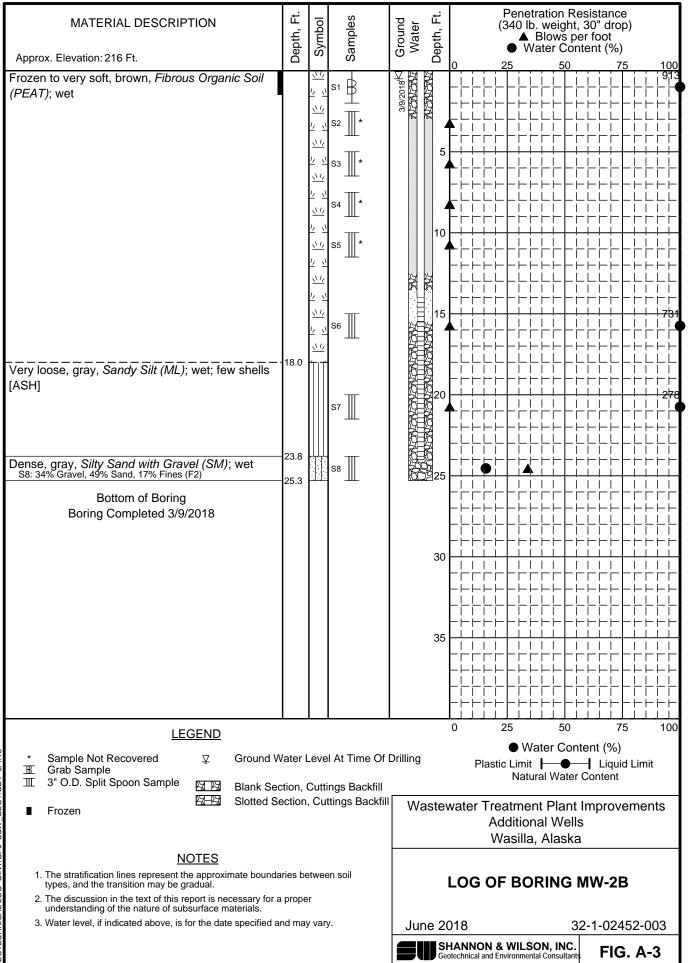
(after Municipality of Anchorage, 2007)

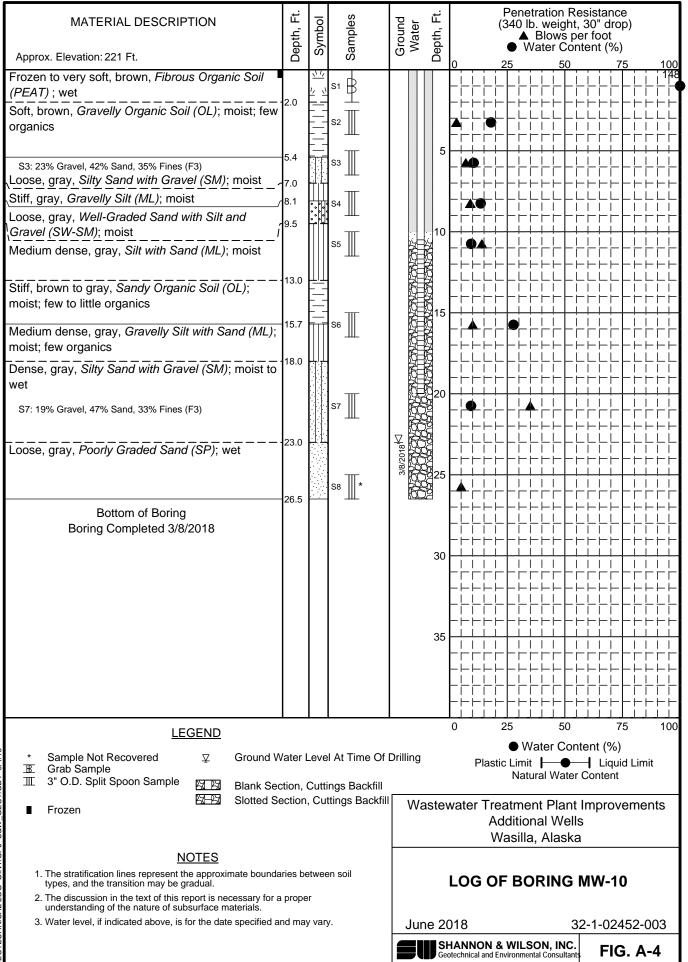
GROUP		0.02 Mil.	P-200*	USC SYSTEM (based on P-200 results)
	Sandy Soils	0 to 3	0 to 6	SW, SP, SW-SM, SP-SM
NFS	Gravelly Soils	0 to 3	0 to 6	GW, GP, GW-GM, GP-GN
F1	Gravelly Soils	3 to 10	6 to 13	GM, GW-GM, GP-GM
F2	Sandy Soils	3 to 15	6 to 19	SP-SM, SW-SM, SM
ΓZ	Gravelly Soils	10 to 20	13 to 25	GM
F3	Sands, except very fine silty sands**	Over 15	Over 19	SM, SC
	Gravelly Soils	Over 20	Over 25	GM, GC
	Clays, PI>12			CL, CH
F4	All Silts			ML, MH
	Very fine silty sands**	Over 15	Over 19	SM, SC
	Clays, PI<12			CL, CL-ML
	Varved clays and other fined grained, banded sediments			CL and ML CL, ML, and SM; SL, SH, and ML; CL, CH, ML, and SM

P-200 = Percent passing the number 200 sieve

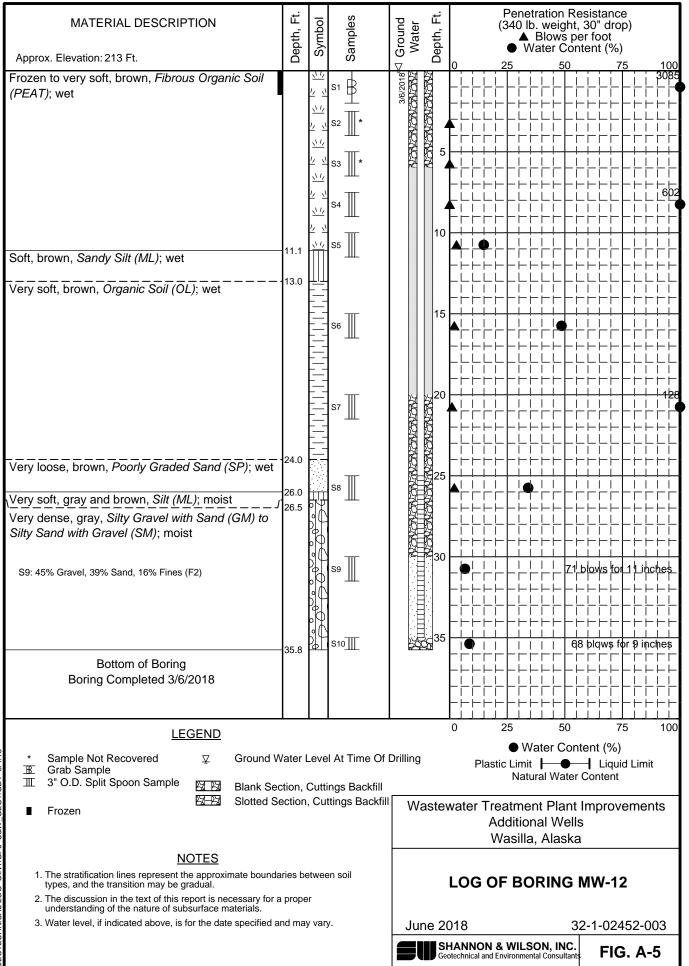
0.02 Mil. = Percent material below 0.02 millimeter grain size

*Approximate P-200 value equivalent for frost classification. Value range based on typical, well-graded soil curves.

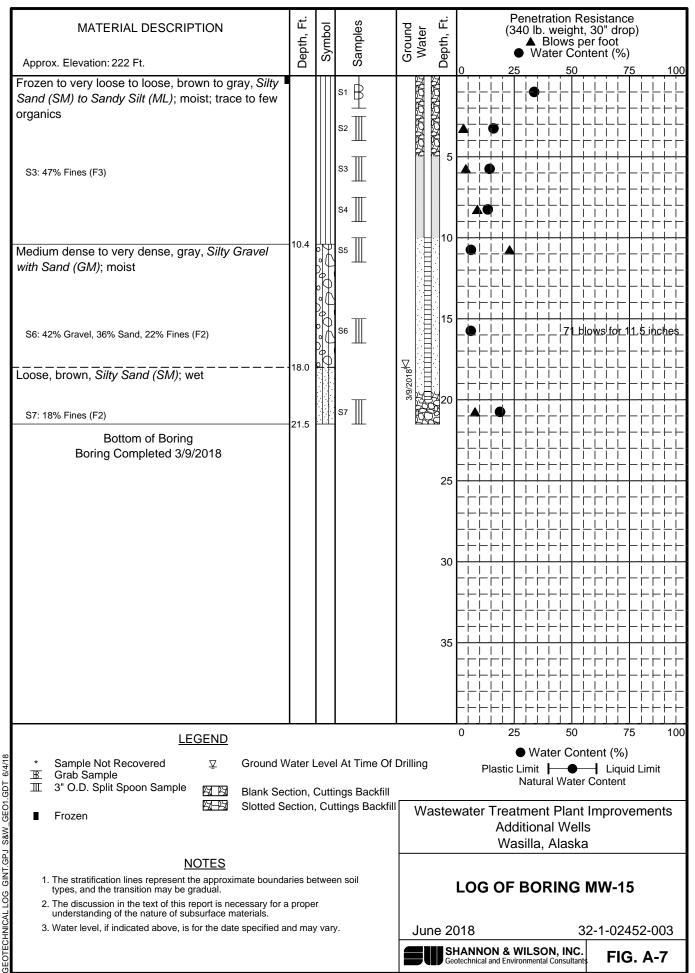

** Very fine sand : greater than 50% of sand fraction passing the number 100 sieve Wastewater Treatment Plant Improvements Additional Wells Wasilla, Alaska


FROST CLASSIFICATION LEGEND

June 2018


SHANNON & WILSON, INC. Geotechnical & Environmental Consultants

32-1-02452-003 FIG. A-2

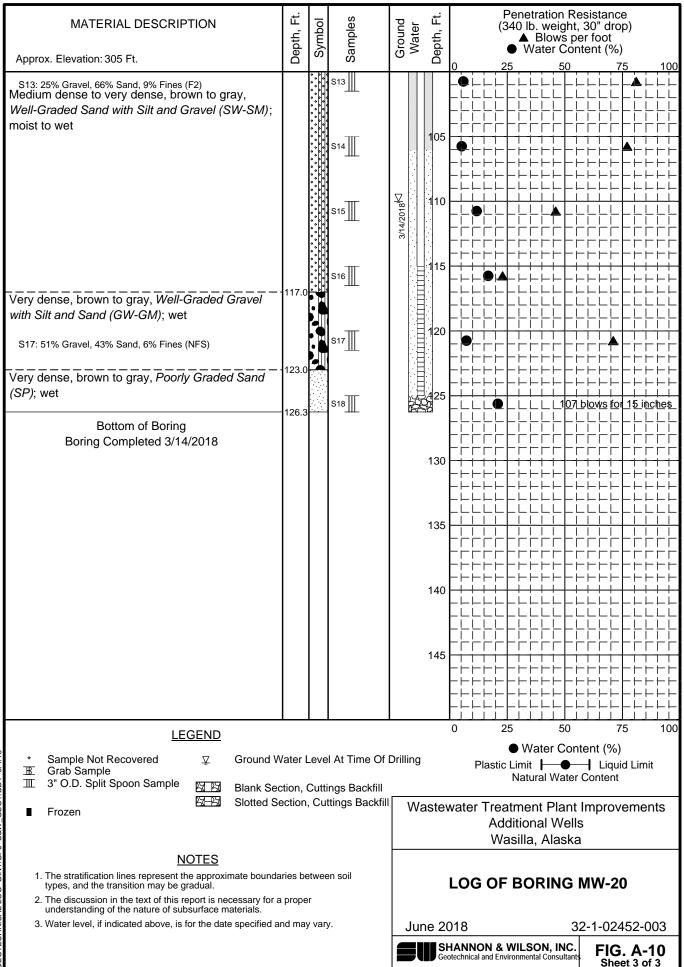


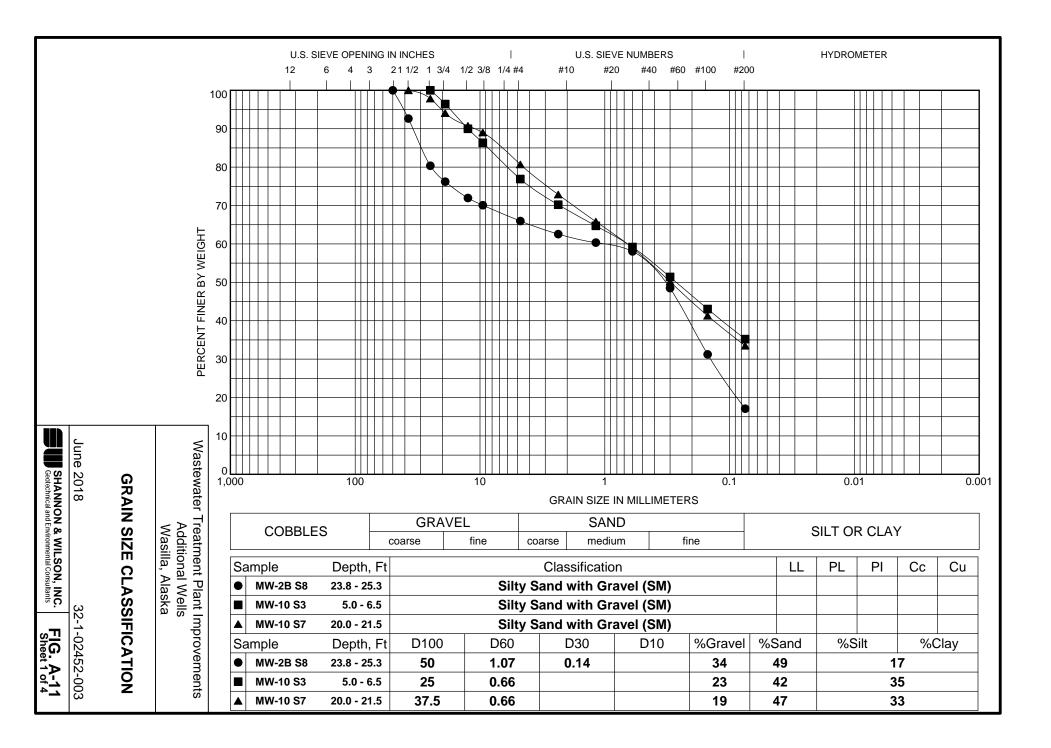
3EOTECHNICAL LOG GINT.GPJ S&W_GEO1.GDT 6/4/18

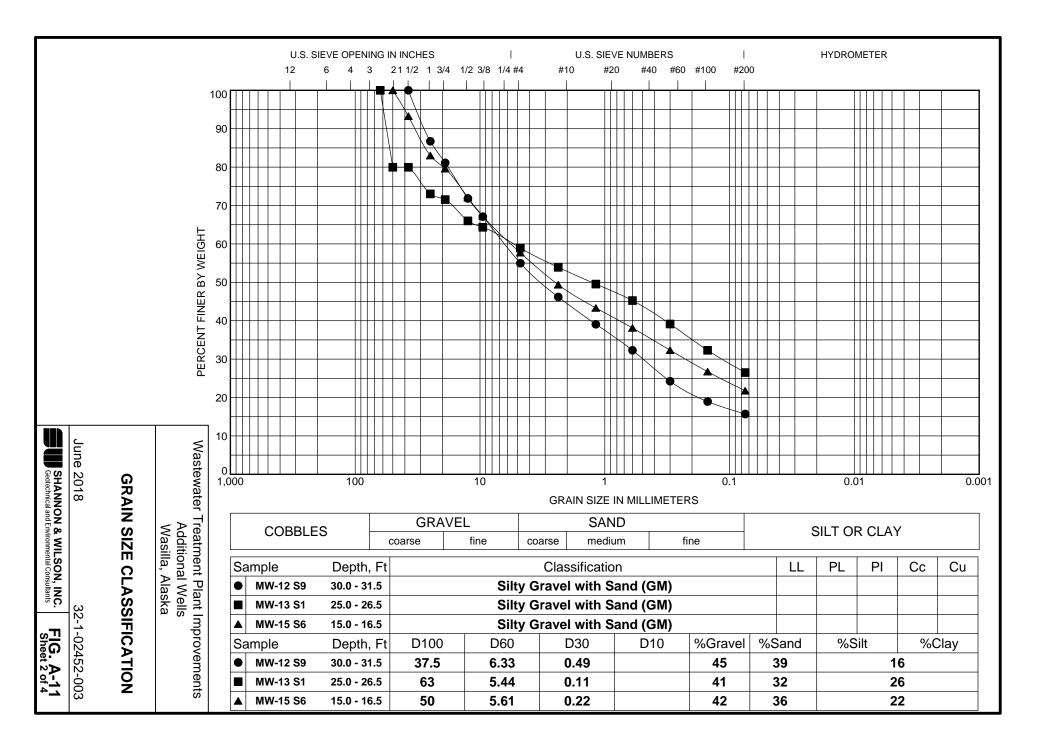
MATERIAL DESCRIPTION	Depth, Ft.	Symbol	Samples	Penetration Resistance (340 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)
Approx. Elevation: 211 Ft.	De	S	Se	∇ \Box 0 25 50 75 10
See Boring Log B-13 included in June 2016 data report for details. Medium dense, gray, <i>Silty Gravel with Sand (GM)</i> ; moist S1: 41% Gravel, 32% Sand, 26% Fines (F3) Medium dense, gray, <i>Silty Sand (SM) to Sandy Silt</i> <i>(ML)</i> ; moist S2: 58% Fines (F4)			S1 II S2 II S3 II	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Bottom of Boring Boring Completed 3/6/2018				
≝ Grab Sample Ⅲ 3" O.D. Split Spoon Sample ⊠⊡⊠ Blank Se	ction, C ection, aries bet a proper	Cuttii Cut		Natural Water Content

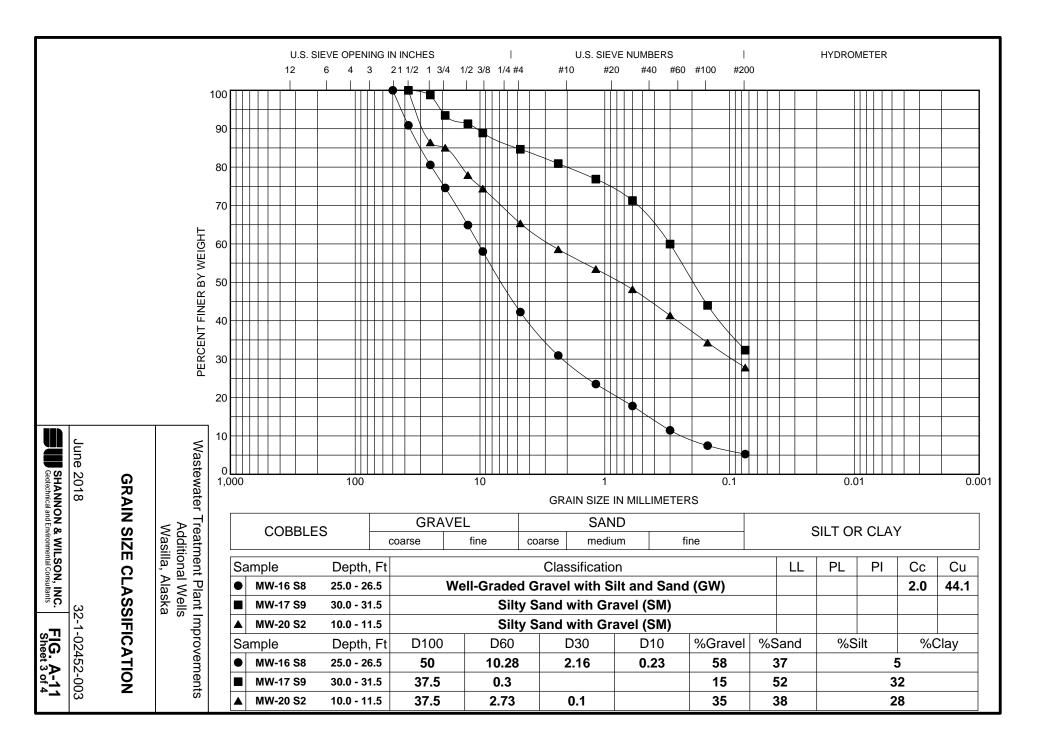
GEOTECHNICAL LOG GINT.GPJ S&W_GEO1.GDT 6/4/18

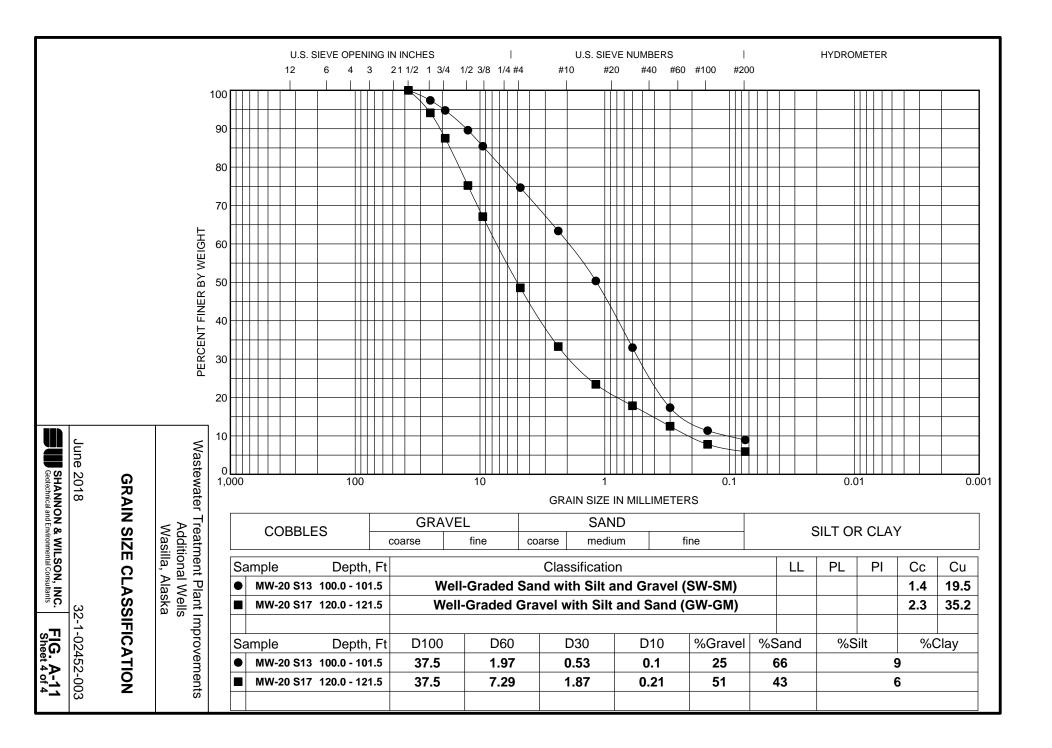
MATERIAL DESCRIPTION	Depth, Ft. Symbol Samples	U Ground Water Depth, Ft.	Penetration Re (340 lb. weight, ▲ Blows pe ● Water Con	30" drop) er foot
Approx. Elevation: 213 Ft.			25 50	75 100
Frozen to very soft, brown, <i>Fibrous Organic Soil (PEAT)</i> ; wet	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$			
Very dense, gray, <i>Silty Sand (SM)</i> ; wet	<u>v</u> v s ⊥⊥ <u>v</u> v <u>v</u> s5 ⊥⊥ <u>v</u> v 14.0 <u>k</u> v			
S6: 45% Fines (F3) Dense, gray, <i>Well-Graded Gravel with Silt and</i> <i>Sand (GW)</i> ; wet	18.0 S6			
	\$7 III \$8 III			
S8: 58% Gravel, 37% Sand, 5% Fines (NFS) Very dense, gray, Silty Sand with Gravel (SM); moist to wet	-28.0			
Bottom of Boring Boring Completed 3/5/2018				
		0	25 50	75 100
		Wastewater T	Water Con stic Limit Natural Water reatment Plant Additional Wells Wasilla, Alaska OF BORING	Liquid Limit Content Improvements
3. Water level, if indicated above, is for the date specified a	June 2018	3	2-1-02452-003	
		Geotechnical and	I & WILSON, INC. d Environmental Consultants	FIG. A-8


Signature Signature
At Time Of Drilling At Time Of Drilling Backfill Wastewater Treatment Plant Improvements Additional Wells Wasilla, Alaska
ngs


MATERIAL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water Depth, Ft.	Penetration Resistance (340 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)
Approx. Elevation: 305 Ft.	Ľ۵	۵ ا	ő		0 25 50 75 100
Frozen to very dense, brown, Silty Sand with Gravel (SM) to Silty Gravel with Sand (GM); moist; few to little organics in upper 2 feet			S1 <u>B</u>	MUNUMUMUMUMU MUNUMUMUMUMU	
S2: 35% Gravel, 38% Sand, 28% Fines (F3)			S2 <u>∏</u>		
			S3 III		
Very dense, brown, <i>Silty Sand (SM)</i> ; moist	25.0		S4 III		
Very dense, brown, <i>Silty Sand with Gravel (SM</i>);	-35.0		S5*		
Dense to very dense, gray, Silt with Gravel to Silt (<i>ML</i>); moist	45.0				
LEGEND					0 25 50 75 100
* Sample Not Recovered ♀ Ground W	ction, (ection	Cutt , Cu	el At Time Of ings Backfill ttings Backfill en soil	Waster	Water Content (%) Plastic Limit Natural Water Content water Treatment Plant Improvements Additional Wells Wasilla, Alaska
3. Water level, if indicated above, is for the date specified and may vary.			June 2	018 32-1-02452-003	
				HANNON & WILSON, INC. otechnical and Environmental Consultants FIG. A-10 Sheet 1 of 3	


GEOTECHNICAL LOG GINT.GPJ S&W_GEO1.GDT 6/4/18


MATERIAL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water Depth, Ft.	Penetration Resistance (340 lb. weight, 30" drop) ▲ Blows per foot
Approx. Elevation: 305 Ft.	De	َنَّ ا	Sa	D > @	 Water Content (%) 0 25 50 75 100
Dense to very dense, gray, <i>Silt with Gravel to Silt (ML)</i> ; moist			56	5 MANANANANANANA MANANANANANANA	
S7: 82% Fines (F4)			s7 🎹		
			58 <u> </u>	75	
Very dense, gray, <i>Silty Gravel with Sand (GM)</i> ; moist	·83.0		s9 <u>∏</u>	80	
Very dense, gray, <i>Silty Sand with Gravel (SM)</i> ; moist Medium dense to very dense, brown to gray, <i>Well-Graded Sand with Silt and Gravel (SW-SM)</i> ; moist to wet	85.6		S10 <u></u> S11 ⊐−−	90	
CONTINUED NEXT PAGE		* * * * * * * * * * * * * * * * * * *	S1211	95	0 25 50 75 100
■ Grab Sample			el At Time Of I ings Backfill	Drilling	Water Content (%) Plastic Limit Autural Water Content
 Frozen NOTES 1. The stratification lines represent the approximate boundaries between soil types, and the transition may be gradual. 2. The discussion in the text of this report is necessary for a proper understanding of the nature of subsurface materials. 			Waster	water Treatment Plant Improvements Additional Wells Wasilla, Alaska	
				LOG OF BORING MW-20	
3. Water level, if indicated above, is for the date specified and may vary.				June 20	
				Ge	HANNON & WILSON, INC. btechnical and Environmental Consultants FIG. A-10 Sheet 2 of 3


GEOTECHNICAL LOG GINT.GPJ S&W_GEO1.GDT 6/4/18

APPENDIX B

JUNE 2016 REVISED GEOTECHNICAL DATA REPORT by Shannon & Wilson

32-1-02452-003

Revised Geotechnical Data Report Wastewater Treatment Plant Improvements Wasilla, Alaska

June 2016

Submitted To:

Stantec

725 East Fireweed Lane, Suite 200 Anchorage, Alaska 99503 Phone: 907.276.4245

By:

Shannon & Wilson, Inc.

5430 Fairbanks Street, Suite 3 Anchorage, Alaska 99518 Phone: (907)561-2120 Fax: (907)561-4483 E-mail: <u>klb@shanwil.com</u>

32-1-02452

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
2.0	SITE AND PROJECT DESCRIPTION	2
3.0	PRIOR EXPLORATIONS	2
4.0	SUBSURFACE EXPLORATIONS 4.1 Drilling Explorations 4.2 Monitoring Wells 4.3 Infiltration Testing	4 6
5.0	LABORATORY TESTING	7
6.0	SUBSURFACE CONDITIONS	9
7.0	CLOSURE AND LIMITATIONS	0

TABLES

- 1 Groundwater Levels Before Survey Data
- 2 Groundwater Levels and Elevations

FIGURES

- 1 Vicinity Map
- 2 Site Plan

APPENDICES

- A Boring Logs and Laboratory Test Results
- B Prior Explorations by Shannon & Wilson and Others
- C Infiltration Testing
- D Analytical Test Results Summary Tables and SGS Results for Groundwater Testing
- E Analytical Test Results Summary Table and SGS Results for Soil Testing
- F Important Information About Your Geotechnical/Environmental Report

REVISED GEOTECHNICAL DATA REPORT WASTEWATER TREATMENT PLANT IMPROVEMENTS WASILLA, ALASKA

1.0 INTRODUCTION

This report presents the results of subsurface explorations, field and laboratory testing, and geotechnical engineering studies by Shannon & Wilson, Inc. for the proposed improvements to the existing Wastewater Treatment Plant in Wasilla, Alaska. The purpose of this geotechnical study was to explore subsurface conditions and to allow for development of geotechnical engineering recommendations for the proposed new infiltration and treatment area. To accomplish this, a total of ten borings were drilled and infiltration testing was conducted in the wetland/bioswale treatment area and on top of the bluff to the southwest. Soil samples recovered from the borings were tested in our geotechnical laboratory and select soil and water samples were submitted to SGS for analytical testing. Presented in this report are descriptions of the site and project, subsurface exploration and laboratory test procedures, an interpretation of subsurface conditions, and conclusions and recommendations from our studies. Shannon & Wilson has provided support during prior phases of this project which were submitted in our May 2008 *Geotechnical Report, Wastewater Treatment Plant Percolation Cell, Wasilla, Alaska.* We have included a portion of the pertinent data from the 2008 report within this deliverable for ease of review.

Authorization to proceed with this work was received in the form of a Subconsultant Agreement, signed by Mr. Dean Syta, P.E. of Stantec on March 6, 2015. Our work was conducted in general accordance with our July 7, 2014 proposal with the exception that several of the proposed boring locations were inaccessible due to shallow water and soft ground conditions. Five of the planned borings were not able to be advanced. In addition, wet and thawed conditions caused the project scope to change and additional funds were authorized by Mr. Syta and the City of Wasilla (Purchase Order 20822) on April 24, 2015. An additional boring on the bluff to the southwest of the site was also added to our originally proposed scope. Results of engineering analyses and groundwater mounding will be presented under separate cover.

2.0 SITE AND PROJECT DESCRIPTION

The existing Wastewater Treatment Plant is located on Jude Drive in Wasilla, Alaska. The existing facility consists of several buildings, a four-cell aerated lagoon system, and nine percolation beds. The proposed improvements include an overland percolation and wetland/bioswale-type treatment area in a 70 acre parcel to the west of the existing facility.

Generally, the developed portion of the facility slopes down to the west and south with an approximately 90-foot tall bluff on the west side of the wetlands. The existing buildings and facilities are at an approximate elevation of 250 feet and directly west of the facility lies the existing sewage lagoons which are at an approximate elevation of 245 feet. The elevation drops to the west to approximately 208 feet in the wetland treatment area, which also slopes down to the south toward a stream and the proposed new point of compliance. The tall bluff is west of the wetland area and rises steeply up with an elevation increase of approximately 90 feet. A residential neighborhood is located atop the bluff and to the west of the project area. At the time of explorations, the project area was thick with vegetation including mature trees, brush, and grasses (with the exception of the existing developed wastewater facility buildings and lagoons). The low lying proposed wetland treatment area was hummocky, boggy, and standing water was observed in numerous locations.

We understand that there will be a distribution pipe that will transport effluent down slope to the wetland area in the summer only and that berms may be constructed within the wetland treatment area to allow ponding and prevent rapid loss of effluent to the stream (on the south end of the wetland). In addition to the explorations conducted for this field effort, which are included in Appendix A, we reviewed previous work by others and Shannon & Wilson, which is described below and provided in Appendix B.

3.0 PRIOR EXPLORATIONS

In 1983, the City of Wasilla contracted with CH2M to design a collection, treatment, and disposal system at the current facility location. A preliminary design report, based on geologic and hydrogeologic investigations of the site, was issued in February 1984 with final design of the facility completed in April 1984. During late 1985, CH2M contracted with RSE in Madison, Wisconsin to conduct an independent review of the drainfield design and estimated capacity.

The final design capacity for the new facility was estimated by CH2M (1986) to be 0.44 million gallons per day (mgd), while RSE (1986) estimated a capacity of 0.15 to 0.2 mgd during their review of the design. Notably, NTL Alaska, Inc. stated in their February 23, 2007, letter to Dean Syta that the water quality of the stream near the base of the slope indicates the system may be performing at capacity between about 0.3 and 0.35 mgd. NTL also observed that the drain field should have a probable treatment capacity between about 0.4 and 0.6 mgd as related to biological oxygen demand and total suspended solids removal by the wastewater lagoon system.

Additional subsurface investigation, laboratory analyses, and groundwater review of a portion of the WWTP site was conducted by Gilfilian Engineering (Gilfilian) in October 1986 to determine the suitability of the reserve area for installation of additional drainfield capacity. Gilfilian advanced 23 borings completed with monitoring wells across the site. We reviewed nine of the Gilfilian borings that were located west of the existing lagoons. In general, Gilfilian concluded that the subject portion of the site consists of free-draining outwash deposits overlying and interlayed with dense till deposits. These main depositional units overlay thick deposits of silty fine sand to sandy silt, which are largely impermeable and found to act as an upper confining layer to the artesian aquifer below. Boring logs and laboratory data that were reviewed are included in Appendix B and approximate boring locations are shown on the site plan in Figure 2.

In addition, Shannon & Wilson conducted explorations in 2007 west of the existing lagoons. Three borings completed with monitoring wells were advanced to supplement previous data. In general, the boring logs indicate that subsurface conditions generally consist of a surficial layer of silt overlying granular material and till. Boring logs and laboratory data from this exploration area included in Appendix B and approximate boring locations are shown on the site plan included as Figure 2. A summary of the previous Shannon & Wilson report indicates that the infiltration capacity of the existing drain fields was estimated at approximately 0.3 to 0.5 million gallons per day (mgd). The 2007 geotechnical and hydraulic design studies were conducted to support a proposed new 5-acre percolation cell west of the existing drain fields. The proposed percolation cell was intended to supplement a series of nine existing subsurface drain beds in an attempt to increase the current hydraulic capacity. Ignoring effluent loss to evaporation, the estimated added benefit of a new percolation cell could be limited to about 0.1 mgd. In addition, slope stability studies indicate that the bluffs to the south and west sides of the developed WWTP site are marginally stable and that increasing effluent discharge at the WWTP site (i.e., either by constructing a new percolation cell or increasing discharge to the existing drain beds) will likely lead to increased seepage on the slopes and reduced slope stability.

WWTP Geotechnical Data Report.docx

4.0 SUBSURFACE EXPLORATIONS

Subsurface explorations consisted of drilling and sampling ten soil borings, installing three monitoring wells, and conducting infiltration tests, which included double ring infiltrometer, falling head, and pilot infiltration test (PIT) methods. The original plan for the project area included a total of 13 proposed borings, however due to standing water and soft ground conditions, five borings were not able to be accessed. In addition, Boring B-14 (located atop the bluff along the west edge of the wetland) was added after the initial exploration phase. With the exception of Boring B-14, the borings were advanced in March, May, and June of 2015, the monitoring wells were developed and sampled in June 2015, and the infiltration testing was conducted in July 2015. Boring B-14 was advanced in February of 2016 and its observation wells on site in March of 2016. Stantec provided survey data for the observation wells on site in March 2016. The approximate locations of these explorations are identified on Figure 2. Summary logs of the borings are provided in Appendix A and infiltration results are presented Appendix C.

4.1 Drilling Explorations

Ten borings, designated Borings B-01 through B-04, B-06, B-08, B-09, B-11, B-13, and B-14, were advanced to depths ranging between 20.5 and 151 feet bgs. The boring locations were recorded using a handheld global positioning system (GPS) with an accuracy of \pm 20 feet and were adjusted as appropriate where survey data was available. Elevations were estimated from topographic contours provided by the Matanuska Susitna Borough (MSB) interactive map website. The locations shown on Figure 2 and the elevations reported on the boring logs should be considered approximate. An experienced representative from our firm was present continuously during drilling to locate the borings, observe drill action, collect soil and water samples, log subsurface conditions, observe installation of monitoring wells, and observe groundwater levels.

Drilling services for this project were provided by Denali Drilling, of Anchorage, Alaska, using track-mounted CME-850 and Mobile B-61 drill rigs. The borings were advanced with $4^{1}/_{4}$ -inch inner diameter (ID) hollow stem auger. During drilling, soil samples were generally collected at 2.5-foot intervals to 10 feet bgs and at 5-foot intervals thereafter using Standard Penetration Test

(SPT) or Modified Penetration Test (MPT) methods. In general, MPT methods were employed when minimal recovery was observed with SPT methods. Boring B-14 was advanced with 3¹/₄inch ID hollow stem auger, 3¹/₂-inch and 3⁵/₈-inch tricone bits and circulating bentonite based drilling fluid, and 3⁵/₈-inch ODEX air hammer. To prevent caving of the borehole walls, 4-inch ID, threaded, flush-coupled casing was advanced along with the drilling. Samples were collected at 5-foot intervals to the bottom of the boring using MPT methods. In the SPT method, samples are recovered by driving a 2-inch outer diameter (OD) split-spoon sampler into the bottom of the advancing hole with blows of a 140-pound hammer free falling 30 inches onto the drill rods. In the MPT method, samples are recovered by driving a 3-inch outer diameter (OD) split-spoon sampler into the bottom of the advancing hole with blows of a 340-pound hammer free falling 30 inches onto the drill rods. For each sample, the number of blows required to drive the sampler the final 12 inches of an 18-inch penetration into undisturbed soil is recorded. When the sampler did not penetrate the full 18 inches, we reported the total blow count and corresponding penetration in inches on the boring logs. Blow counts are shown graphically on the boring log figures as "penetration resistance" and are displayed adjacent to sample depth. The penetration resistance values give a measure of the relative density (compactness) or consistency (stiffness) of cohesionless or cohesive soils, respectively.

Samples recovered during drilling were visually classified according to the classification system presented in Appendix A, Figure A-1. The field soil classifications were verified through laboratory analysis for selected samples. Frost classifications included on the logs in Appendix A and are followed by "0.02 Mil" or "P-200" to indicate whether frost classifications were based on hydrometer or sieve/P-200 data, respectively. The frost classification system is presented in Appendix A, Figure A-2. Summary logs of the borings are presented in Appendix A, Figures A-3 through A-12.

Three analytical soil samples were collected from Borings B-06, B-08, and B-09. Shannon & Wilson's field representative used clean stainless steel spoons and wore new nitrile gloves to transfer analytical soil samples into laboratory-supplied containers. The samples were transported to the laboratory in coolers with ice packs using chain-of-custody procedures.

Borings B-01 through B-04, B-11, and B-13 were completed by installing 1-inch, polyvinyl chloride (PVC) groundwater level observation wells with slotted tips to facilitate observation of groundwater levels. The annular space between the borehole walls and casings was backfilled

with auger cuttings produced during drilling activity. The installation details for each groundwater level observation well are shown on the boring logs. The PVC well casings were generally allowed to stick up out of the ground approximately 1 to 2 feet to aid in finding them in the future. Borings B-06, B-08, and B-09 were completed with Monitoring Wells MW6, MW8, and MW9 as described below in Section 4.2.

Boring B-14 was completed with two nested, 1-inch, PVC groundwater level observation wells with slotted tips. One of the PVC groundwater observation wells was placed at the bottom of the boring at approximately 149 feet bgs, and the other was placed at approximately 97 feet bgs. They were hand slotted from 144 to 149 feet bgs and 87 to 97 feet bgs, respectively. Sandpack was used as backfill around the slotted portions of the observation wells and a bentonite seal was also placed from approximately 131 to 137 feet bgs to prevent flow between the slotted portions of the observation wells. The remainder of the boring was backfilled with auger cuttings generated during drilling activities.

Two water samples were collected from Boring B-14 for Nitrate/Nitrite analysis. Shannon & Wilson's field representative used clean water bailers and wore nitrile gloves to collect and transfer the water samples into laboratory-supplied containers. The samples were transported to the laboratory in coolers with ice packs using chain-of-custody procedures.

4.2 Monitoring Wells

Groundwater characterization activities included well installation, development, and sampling. Monitoring Wells MW6, MW8, and MW9 were installed in Borings B-06, B-08, and B-09, respectively. The monitoring wells were constructed from 2-inch diameter schedule 40, polyvinyl chloride (PVC) pipe with threaded connections. The bottom 10 feet of the wells were constructed using 2-inch diameter, 0.010 slotted Schedule 40 PVC well screen. Silica sand was used to backfill around the well screen to approximately 2 feet above the screened section. Hydrated bentonite chips were used to backfill above the sand to the ground surface. The PVC was cut off above ground level. The monitoring well locations are the same as the boring locations and shown on the site plan in Figure 2.

The monitoring wells were developed at least 24 hours following installation using a surge block and a submersible pump with dedicated disposable tubing. Three to five minute periods of surging were alternated with periods of pumping. During well development, water quality

parameters including pH, temperature, turbidity, and conductivity were measured with a YSI 556 and a Hach turbidimeter at approximately 5 minute intervals.

Development was considered complete once the following stabilization criteria were met over three successive readings: pH was within 0.1 unit, temperature was within 3 percent (minimum 0.2 degree Celsius), conductivity was within three percent, and turbidity was within 10 percent or three consecutive readings were below 10 nephelometric turbidity units (NTU). Groundwater data, including final water quality parameter measurements during development, are summarized in Table D-1 in Appendix D.

Groundwater samples were collected from the developed monitoring wells directly following development. The wells were allowed to recharge to at least 80 percent of the pre-purge water volume, and the wells were not purged again prior to sampling. Samples were collected using a submersible pump and dedicated disposable tubing. Analytical samples were collected by transferring water directly from the pump tubing into the laboratory supplied containers. Groundwater test results are summarized in Table D-2 and provided in Appendix D.

Investigation derived waste (IDW) consisted of development water, purge water, and disposable sampling equipment. The development and purge water was discharged directly to the ground surface. The disposable sampling equipment was put into a dumpster.

4.3 Infiltration Testing

Infiltration testing at the site consisted of a PIT, a double ring infiltrometer test, and two falling head tests. The PIT test was conducted in an upland area west of the existing lagoons and east of the wetland/lowlying area. The double ring infiltrometer test was conducted adjacent to Boring B-06, and the falling head tests were conducted adjacent to Boring B-08 and the proposed location for B-12, which was not able to be advanced due to drill rig inaccessibility. The approximate locations of the infiltration tests are shown on the site plan in Figure 2. Procedures for testing and results of the infiltration testing are provided in Appendix C.

5.0 LABORATORY TESTING

Laboratory tests were performed on selected samples recovered from the borings to confirm field classifications and to estimate the index properties of the typical materials encountered in the

borings. The laboratory testing was formulated with emphasis on estimating the material gradation and in-situ water content.

Water content tests were performed in general accordance with ASTM International (ASTM) D2216. The results of the water content measurements are presented graphically on the boring logs in Appendix A.

Grain size classification (gradation) testing was performed to estimate the particle size distribution of selected samples from the borings. The gradation testing generally followed the procedures described in ASTM C136/117 and D422. The test results are presented in Appendix A as Figure A-13 (8 sheets), and summarized on the boring logs as percent gravel, percent sand, and percent fines. Percent fines on the boring logs are equal to the sum of the silt and clay fractions indicated by the percent passing the No. 200 sieve. Note that hydrometer testing indicates particle size only and visual classification under USCS designates the entire fraction of soil finer than the No. 200 sieve as silt. Plasticity characteristics (Atterberg Limits results) are required to differentiate between silt and clay soils under USCS.

In addition, we conducted tests on selected samples to estimate the amount of material passing the No. 200 sieve (P-200). The P-200 test provides an estimate of the fines (silt and clay) content. These tests were performed in general accordance with ASTM C117. The results of these tests are indicated as percent fines on the boring logs.

Atterberg Limits testing was conducted on select samples of cohesive/fine grained soil encountered to estimate plasticity characteristics. This test generally followed procedures described in ASTM D4318. The results of the tests are presented on the boring logs and in Appendix A, Figure A-14.

Three soil samples and three groundwater samples were collected from the 2015 explorations and analyzed for Resource Recovery and Conservation Act (RCRA) metals by Environmental Protection Agency (EPA) Method SW6020. In addition, the groundwater samples were analyzed for pH by EPA Method SM21 4500, total nitrate/nitrite by EPA Method SM21 4500. Two "grab" groundwater samples were collected from Boring B-14, one from the deep observation well and one from the shallow observation well, and tested for nitrate and nitrite levels by EPA Method 300.0.

The samples were submitted to SGS for analytical testing, using chain-of-custody procedures. The laboratory reports for the water samples are provided in Appendix D and the laboratory results for the soil samples are provided in Appendix E. The analytical groundwater and soil sample results are summarized in the Tables provided in Appendix D and E, respectively.

6.0 SUBSURFACE CONDITIONS

The subsurface conditions encountered at the site are depicted in detail on Shannon & Wilson's boring logs in Appendix A. In general, subsurface conditions encountered during this effort of explorations correlate well to the previous work (described above) by Gilfilian in 1986 and Shannon & Wilson in 2007. In general, our borings encountered decomposed organic soil (swamp material) overlying granular material interbedded with occasional thin silt layers. Borings B-01, B-02, B-03, B-06, B-08, B-11, and B-13 were drilled within the lowlying wetland area and encountered approximately 2.2 to 13 feet of very soft to soft brown decomposed organic soil. Blow counts were typically less than 5 blows per foot (bpf) while sampling within this layer and sample recovery was difficult. Borings B-04 and B-09 were advanced in upland area east of the wetland and encountered approximately 2 to 3 feet of silt with sand and occasional organics at the surface. Boring B-14 was advanced in the upland area west of the wetland and encountered approximately one foot of organic material at the surface. Below the surface silts and swamp material, thin (approximately $2\frac{1}{2}$ to 6 feet thick) silt layers were found in Borings B-01, B-02, B-03, B-08, and B-13. Blow counts in the fine grained layers ranged from 5 to 25 bpf, with the average at approximately 12 bpf. Moisture content in the silt material ranged from 9 to 89 percent, with the average at approximately 42 percent moisture.

Granular material found within our borings consisted of sand and gravel with varying amounts of silt. We identified interfingered zones of alluvium/outwash and glacial till, which were distinct in their appearance, lower fines content, and higher blow counts. Granular material was generally medium dense to very dense with the exception of loose zones found between approximately 16 and 18 feet bgs in Boring B-01 and between approximately 13 and 18 feet bgs in Boring B-02. Blow counts within the granular material ranged from 3 to more than 50 blows bpf with the average at approximately 43 bpf, and moisture content ranged from 2 to 25 percent with the average at approximately 9 percent. Fines content within the granular soils ranged from 2 to 45 percent with the average at approximately 15 percent. Cobbles were noted in Borings B-04, B-08, B-09, B-11, and B-14 as evidenced by rough drill action and the presence of fractured

rock in samples. It should be noted that occasional cobbles and boulders may be present throughout the soils beneath the site.

Groundwater was encountered during drilling between 0 (at the surface) and 90 feet bgs. Static water levels in the lowlying borings have been measured between approximately 0 and 4 feet bgs and at approximately 15 feet bgs and 14 feet bgs in Borings B-04 and B-09, respectively. Boring B-14 had two water level measurements because of the nested observation wells. The deep well had a static water level of approximately 86 feet bgs and the shallow well had a static water level of approximately 86 feet bgs and the shallow well had a static water level of approximately 90 feet bgs. In addition, Boring B-06 has exhibited water flowing out of the monitoring well installed during subsequent visits to the site. Static levels have been measured in June and July, 2015, January, 2016, and in March, 2016 and are presented in Tables 1 and 2. It should be noted that zones of perched water may be encountered on top of impermeable or low permeability soils during periods of high precipitation or rapid snow melt. Likewise these zones of perched water may also be present within cleaner pockets of soil that may be encountered during site work. Note that groundwater levels may fluctuate by several feet seasonally, or during periods of high precipitation or rapid snowmelt.

7.0 CLOSURE AND LIMITATIONS

This report was prepared for the exclusive use of our client and their representatives for evaluating the site as it relates to the geotechnical aspects discussed herein. The conclusions contained in this report are based on site conditions as they presently exist. It is assumed that the exploratory borings are representative of the subsurface conditions throughout the site, i.e., the subsurface conditions everywhere are not significantly different from those disclosed by the explorations.

If, during construction, subsurface conditions different from those encountered in these are observed or appear to be present, Shannon & Wilson, Inc. should be advised at once so that these conditions can be reviewed where necessary. If there is a substantial lapse of time between the submittal of this report and the start of work at the site, or if conditions have changed due to natural causes or construction operations at or adjacent to the site, it is recommended that this report be reviewed to determine the applicability of the conclusions considering the changed conditions and time lapse.

Unanticipated soil conditions are commonly encountered and cannot fully be determined by merely taking soil samples or advancing borings. Such unexpected conditions frequently require that additional expenditures be made to attain a properly constructed project. Therefore, some contingency fund is recommended to accommodate such potential extra costs.

The scope of our geotechnical services did not include evaluating potential impacts to natural resources, including wetlands, endangered species, or environmentally critical areas.

Shannon & Wilson has prepared the attachments in Appendix F *Important Information About Your Geotechnical/Environmental Report* to assist you and others in understanding the use and limitations of the reports.

Copies of documents that may be relied upon by our client are limited to the printed copies (also known as hard copies) that are signed or sealed by Shannon & Wilson with a wet, blue ink signature. Files provided in electronic media format are furnished solely for the convenience of the client. Any conclusion or information obtained or derived from such electronic files shall be at the user's sole risk. If there is a discrepancy between the electronic files and the hard copies, or you question the authenticity of the report please contact the undersigned.

We appreciate this opportunity to be of service. Please contact the undersigned at (907) 561-2120 with questions or comments concerning the contents of this report.

SHANNON & WILSON, INC.

Katha wedering

Digitally signed by Katra Wedeking Date: 2016.08.29 15:13:01 -08'00'

Katra Wedeking, CPG Senior Geologist

Kyle Brennan, P.E. Vice President

 TABLE 1

 GROUNDWATER LEVELS BEFORE SURVEY DATA

	Static Water Level Depth (feet bgs)							
Date	Boring B-01	Boring B-02	Boring B-03	Boring B-04	Boring B-06	Boring B-08	Boring B-09	Boring B-11
6/2/2015	0.0	4.0	0.7	15.1	-1.5	-1.0	14.4	4.7
6/23/2015	0.0	4.1	0.9	15.2	-1.5	0.0	13.9	4.2
7/24/2015	0.1	0.4	0.9	15.2	-0.9	0.2	13.9	3.9
1/8/2016	Frozen	Frozen	Frozen	15.1	Frozen	Frozen	14.0	4.2

Notes:

¹bgs = Below Ground Surface

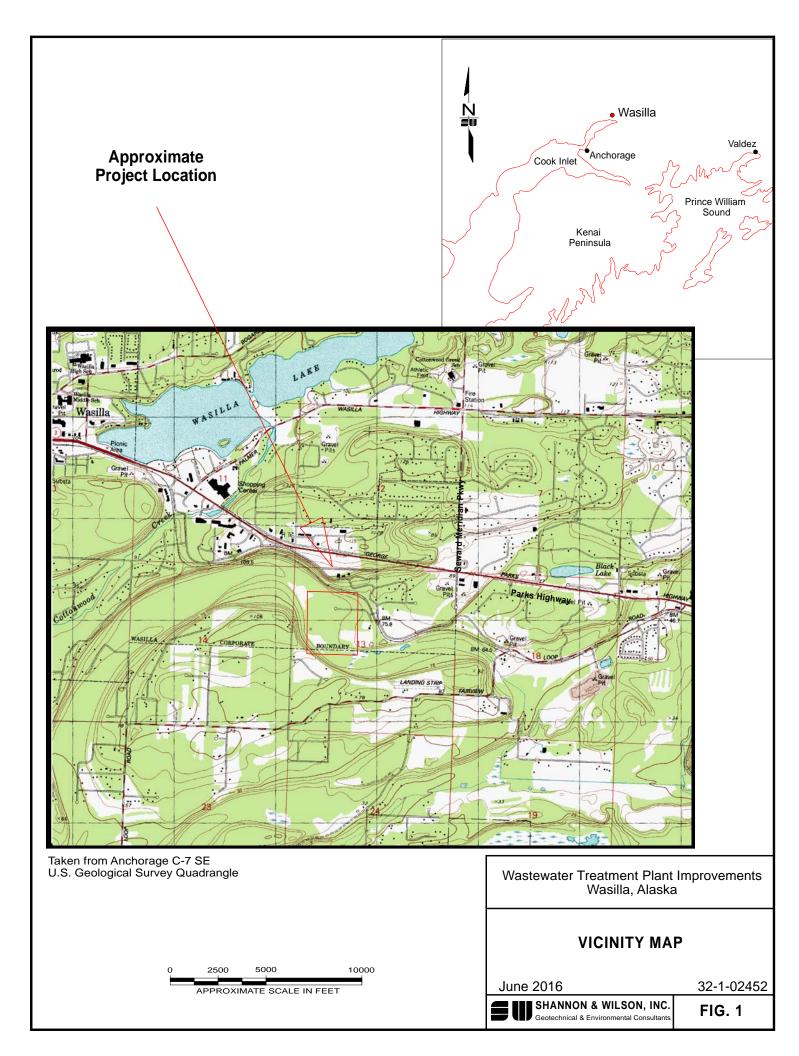
²Water flowing above the ground surface is shown with a negative value.

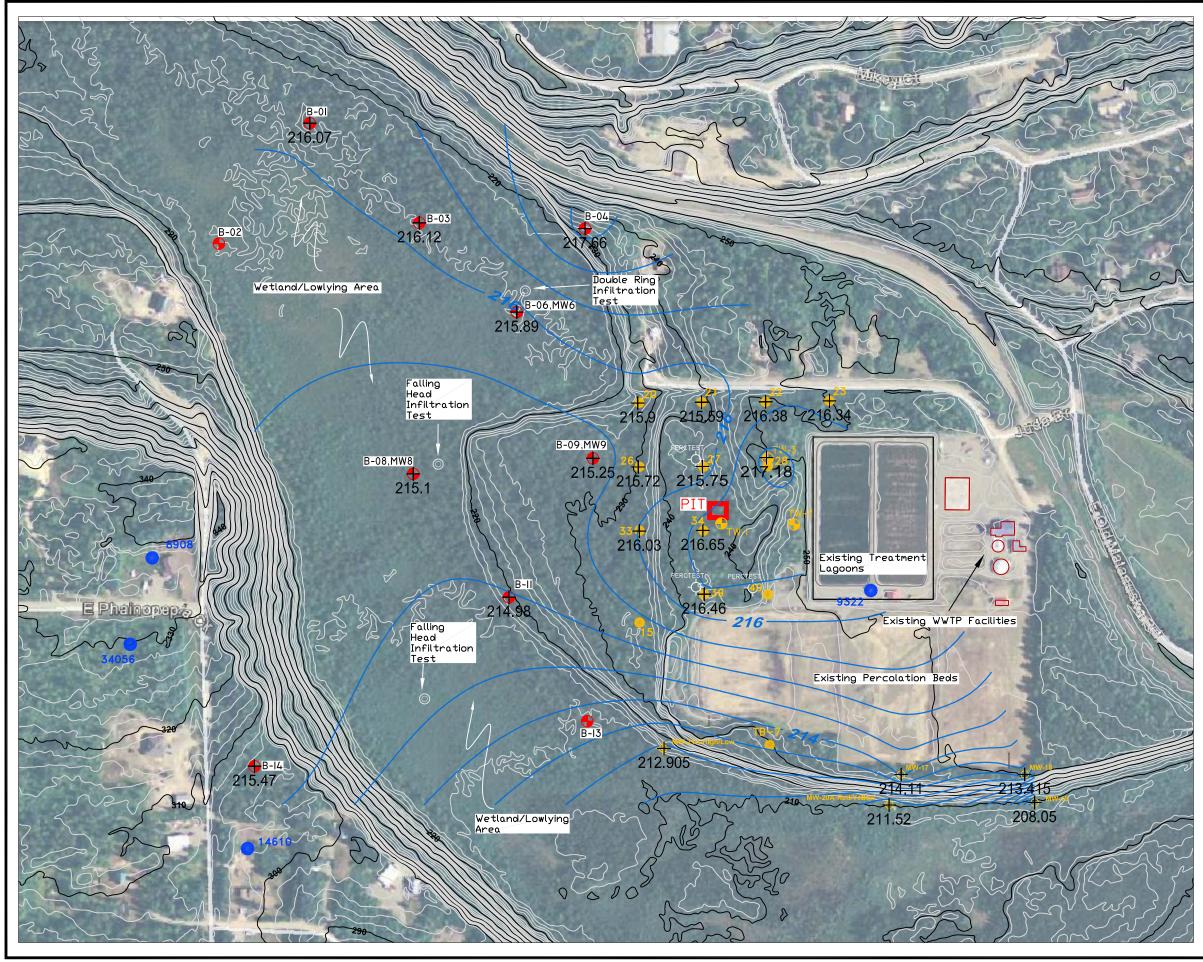
 $^{3}\mbox{Water}$ level measurements on this table were taken without survey data.

Static Water Levels					
Monitoring		Groundwater	Water Level		
Well	Date	Elevation ³ (feet)	(feet bgs ¹)		
20	3/7/2016	215.90	11.29		
21	3/7/2016	215.59	22.74		
22	3/7/2016	216.38	34.82		
23	3/7/2016	216.34	33.63		
26	3/7/2016	215.72	14.66		
27	3/7/2016	215.75	26.15		
28	3/7/2016	219.54	31.96		
33	3/7/2016	216.03	16.03		
34	3/7/2016	216.65	24.40		
39	3/7/2016	216.46	26.47		
B-01	3/7/2016	216.07 ⁵	Frozen		
B-03	3/7/2016	216.12 ⁵	Frozen		
B-04	3/7/2016	217.66	14.88		
B-06	3/7/2016	215.89 ⁵	Frozen		
B-08	3/7/2016	215.10 ⁵	Frozen		
B-09	3/7/2016	215.25	13.55		
B-11	3/7/2016	214.98	3.73		
B-13	3/7/2016	210.84 ⁵	Frozen		
B-14 ⁴ Deep	3/7/2016	219.15	86.03		
$B-14^4$ Shallow	3/7/2016	215.47	89.82		
MW-17	3/7/2016	214.11	33.93		
MW-18	3/7/2016	213.42	36.05		
MW-19	3/7/2016	208.05	0.06		
MW-20A Red	3/7/2016	211.52	-1.37 ²		
MW-20A Yellow	3/7/2016	209.69 ⁵	Frozen		
MW-21A High	3/7/2016	212.91	2.46		
MW-21A Low	3/7/2016	212.74	2.61		
TB-7	3/7/2016	221.14	20.43		
TW-1	3/7/2016	228.32	13.00		
TW-2	3/7/2016	229.14	19.69		
TW-3	3/7/2016	217.18	33.55		

TABLE 2GROUNDWATER LEVELS AND ELEVATIONS

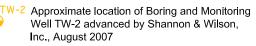
Notes:


¹bgs = Below Ground Surface


²Water flowing above the ground surface is shown with a negative value.

³Stantec survey data used in estimating groundwater elevations.

⁴Boring B-14 contains two nested piezometers for water level monitoring. The deep piezometer extends to approximately 149 feet bgs and the shallow piezometer extends to approximately 97 feet bgs. See boring log for well configuration details.


⁵Groundwater elevation assumed at approximate ground elevation due to frozen water conditions.

LEGEND

- B-01 Approximate location of Boring B-01 advanced by Shannon & Wilson, Inc., March/May 2015 and February 2016
- PIT Approximate location of Pilot Infiltration Test conducted by Shannon & Wilson, Inc., July 2015

- PERCTEST Approximate location of Percolation test conducted between 2.5 4 feet bgs with rates ranging from 0.07 to 1.4 min/in by Shannon & Wilson, Inc., August 2007
- 15 Approximate location of Test Boring 15 by Gilfilian Engineering, Inc., May/October 1986

- **3908** Approximate location of private well 3908
- + Approximate Groundwater elevation used for 215 1 contour generation

Groundwater Contours, 0.5-foot Interval

Topographic Contours, 2-foot Interval.

NOTES

- 1. Basemap imagery provided by Google Earth Pro, reproduced by permission granted by Google Earth[™] Mapping Service.
- 2. Topographic contours from MatSu Borough GIS online database.

Wastewater Treatment Plant Improvements Wasilla, Alaska

SITE PLAN

APPENDIX A

BORING LOGS AND LABORATORY TEST RESULTS

FIGURES

A-1	Soil Description and Log Key
A-2	Frost Classification System
A-3	Log of Boring B-1
A-4	Log of Boring B-2
A-5	Log of Boring B-3
A-6	Log of Boring B-4
A-7	Log of Boring B-6
A-8	Log of Boring B-8
A-9	Log of Boring B-9
A-10	Log of Boring B-11
A-11	Log of Boring B-13
A-12	Log of Boring B-14
A-13	Grain Size Classification
A-14	Atterberg Limits Results

Shannon & Wilson, Inc. (S&W), uses a soil identification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following pages. Soil descriptions are based on visual-manual procedures (ASTM D2488) and laboratory testing procedures (ASTM D2487), if performed.

S&W INORGANIC SOIL CONSTITUENT DEFINITIONS

CONSTITUENT ²	FINE-GRAINED SOILS (50% or more fines) ¹	COARSE-GRAINED SOILS (less than 50% fines) ¹		
Major	Silt, Lean Clay, Elastic Silt, or Fat Clay ³	Sand or Gravel ⁴		
Modifying (Secondary) Precedes major constituent	30% or more coarse-grained: Sandy or Gravelly ⁴	More than 12% fine-grained: Silty or Clayey ³		
Minor	15% to 30% coarse-grained: <i>with Sand</i> or <i>with Gravel</i> ⁴	5% to 12% fine-grained: <i>with Silt</i> or <i>with Clay</i> ³		
Follows major constituent	30% or more total coarse-grained and lesser coarse- grained constituent is 15% or more: with Sand or with Gravel ⁵	15% or more of a second coarse- grained constituent: <i>with Sand</i> or <i>with Gravel</i> ⁵		
¹ All percentages are by weight of total specimen passing a 3-inch sieve ² The order of terms is: <i>Modifying Major with Minor</i> . ³ Determined based on behavior				

Determined based on behavior.

⁴Determined based on which constituent comprises a larger percentage. ⁵Whichever is the lesser constituent.

MOISTURE CONTENT TERMS

Dry	Absence of moisture, dusty, dry to the touch

Moist Damp but no visible water

Wet Visible free water, from below water table

STANDARD PENETRATION TEST (SPT) SPECIFICATIONS

Hammer:	140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-diam. cathead 2-1/4 rope turns, > 100 rpm
	NOTE: If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for efficiency of hammer.
Sampler:	10 to 30 inches long Shoe I.D. = 1.375 inches Barrel I.D. = 1.5 inches Barrel O.D. = 2 inches
N-Value:	Sum blow counts for second and third 6-inch increments. Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches.
bori hav	etration resistances (N-values) shown on ing logs are as recorded in the field and e not been corrected for hammer ciency, overburden, or other factors.

PARTICLE SIZE DEFINITIONS			
DESCRIPTION	SIEVE NUMBER AND/OR APPROXIMATE SIZE		
FINES	< #200 (0.075 mm = 0.003 in.)		
SAND Fine Medium Coarse	#200 to #40 (0.075 to 0.4 mm; 0.003 to 0.02 in.) #40 to #10 (0.4 to 2 mm; 0.02 to 0.08 in.) #10 to #4 (2 to 4.75 mm; 0.08 to 0.187 in.)		
GRAVEL Fine Coarse	#4 to 3/4 in. (4.75 to 19 mm; 0.187 to 0.75 in.) 3/4 to 3 in. (19 to 76 mm)		
COBBLES	3 to 12 in. (76 to 305 mm)		
BOULDERS	> 12 in. (305 mm)		

RELATIVE DENSITY / CONSISTENCY

COHESIONLESS SOILS		COHES	SIVE SOILS
N, SPT, RELATIVE BLOWS/FT. <u>DENSITY</u>		N, SPT, <u>BLOWS/FT.</u>	RELATIVE CONSISTENCY
< 4	Very loose	< 2	Very soft
4 - 10	Loose	2 - 4	Soft
10 - 30	Medium dense	4 - 8	Medium stiff
30 - 50	Dense	8 - 15	Stiff
> 50	Very dense	15 - 30	Very stiff
		> 30	Hard

WELL AND BACKFILL SYMBOLS

Bentonite Cement Grout	Surface Cement Seal
Bentonite Grout	Asphalt or Cap
Bentonite Chips	Slough
Silica Sand	Inclinometer or Non-perforated Casing
Perforated or Screened Casing	Vibrating Wire Piezometer

PERCENTAGES TERMS ^{1, 2}

Trace	< 5%	
Few	5 to 10%	
Little	15 to 25%	
Some	30 to 45%	
Mostly	50 to 100%	

¹Gravel, sand, and fines estimated by mass. Other constituents, such as organics, cobbles, and boulders, estimated by volume.

²Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

> Wastewater Treatment Plant Improvements Wasilla, Alaska

SOIL DESCRIPTION AND LOG KEY

June 2016

32-1-02452

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 1 of 3

MAJOR DIVISIONS			GROUP/GRAPHIC SYMBOL		TYPICAL IDENTIFICATIONS	
		Gravel	GW		Well-Graded Gravel; Well-Graded Gravel with Sand	
	Gravels (more than 50%	(less than 5% fines)	GP		Poorly Graded Gravel; Poorly Graded Gravel with Sand	
	of coarse fraction retained on No. 4 sieve)	Silty or Clayey Gravel	GM		Silty Gravel; Silty Gravel with Sand	
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey Gravel; Clayey Gravel with Sand	
(more than 50% retained on No. 200 sieve)	Sands (50% or more of coarse fraction passes the No. 4 sieve)	Sand (less than 5% fines)	sw		Well-Graded Sand; Well-Graded Sar with Gravel	
			SP		Poorly Graded Sand; Poorly Graded Sand with Gravel	
		Silty or Clayey Sand (more than 12% fines)	SM		Silty Sand; Silty Sand with Gravel	
			SC		Clayey Sand; Clayey Sand with Grav	
	Silts and Clays (liquid limit less than 50)	Inorganic	ML		Silt; Silt with Sand or Gravel; Sandy o Gravelly Silt	
			CL		Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Clay	
FINE-GRAINED SOILS		Organic	OL		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay	
(50% or more passes the No. 200 sieve)	Silts and Clays (liquid limit 50 or more)	Inorganic	МН		Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravelly Elastic Silt	
			СН		Fat Clay; Fat Clay with Sand or Grav Sandy or Gravelly Fat Clay	
		Organic	он		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay	
HIGHLY- ORGANIC SOILS		c matter, dark in organic odor	PT		Peat or other highly organic soils (se ASTM D4427)	

NOTE: No. 4 size = 4.75 mm = 0.187 in.; No. 200 size = 0.075 mm = 0.003 in.

NOTES

- 1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., SP and SM).
- Borderline symbols (symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups.

Wastewater Treatment Plant Improvements Wasilla, Alaska

SOIL DESCRIPTION AND LOG KEY

June 2016

32-1-02452

FIG. A-1 Sheet 2 of 3

Poorly Gree	GRADATION TERMS ded Narrow range of grain sizes preser	ot	л –
Well-Grad	or, within the range of grain sizes present, one or more sizes are missing (Gap Graded). Meets crite in ASTM D2487, if tested.	eria	
	CEMENTATION TERMS ¹		-
Weak	Crumbles or breaks with handling or		
Moderate	slight finger pressure Crumbles or breaks with considerabl finger pressure	е	
Strong	Will not crumble or break with finger pressure		
	PLASTICITY ²		
	PLASI INE	DEX	r
DESCRIPTION Nonplastic		NGE 4	-
Low	at any water content. A thread can barely be rolled and 4 to a lump cannot be formed when	o 10	
Medium	much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic	o 20	
High	limit. A lump crumbles when drier than the plastic limit. It take considerable time rolling and kneading to reach the plastic limit. A thread can be rerolled several times after reaching the plastic limit. A lump can be formed without crumbling when drier than the plastic limit.	20	
	ADDITIONAL TERMS		
Mottled	Irregular patches of different colors.		
Bioturbated	Soil disturbance or mixing by plants or animals.		
Diamict	Nonsorted sediment; sand and gravel in silt and/or clay matrix.		Lamin
Cuttings	Material brought to surface by drilling.		Fiss
Slough	Material that caved from sides of borehole.		Slickens
Sheared	Disturbed texture, mix of strengths. ANGULARITY AND SHAPE TERMS ¹		Bl
Angular	Sharp edges and unpolished planar		Lei
Ū	surfaces.	Н	omogen
Subangular	Similar to angular, but with rounded edges.		onogen
Subrounded	Nearly planar sides with well-rounded edges.		
Rounded	Smoothly curved sides with no edges.		
Flat	Width/thickness ratio > 3.		
Elongated	Length/width ratio > 3.		
escription and Ide ternational, 100 B e complete standa dapted, with perm	mission, from ASTM D2488 - 09a Standard Pr ntification of Soils (Visual-Manual Procedure), arr Harbor Drive, West Conshohocken, PA 19 ard may be obtained from ASTM International, nission, from ASTM D2488 - 09a Standard Pra ntification of Soils (Visual-Manual Procedure).	copyrig 428. A www.a ctice fo	ght ASTM copy of istm.org. or

Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM

International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

ACRONYMS AND ABBREVIATIONS

ATD	At Time of Drilling
Diam.	Diameter
Elev.	Elevation
ft.	Feet
FeO	Iron Oxide
gal.	Gallons
Horiz.	Horizontal
HSA	Hollow Stem Auger
I.D.	Inside Diameter
in.	Inches
lbs.	Pounds
MgO	Magnesium Oxide
mm	Millimeter
MnO	Manganese Oxide
NA	Not Applicable or Not Available
NP	Nonplastic
O.D.	Outside Diameter
OW	Observation Well
pcf	Pounds per Cubic Foot
PID	Photo-Ionization Detector
PMT	Pressuremeter Test
ppm	Parts per Million
psi	Pounds per Square Inch
PVC	Polyvinyl Chloride
rpm	Rotations per Minute
SPT	Standard Penetration Test
USCS	Unified Soil Classification System
qu	Unconfined Compressive Strength
VWP	Vibrating Wire Piezometer
Vert.	Vertical
WOH	Weight of Hammer
WOR	Weight of Rods
Wt.	Weight
ST	
Ided Alte	rnating layers of varying material or color
	layers at least 1/4-inch thick; singular: bed.

Interbedded	Alternating layers of varying material or color with layers at least 1/4-inch thick; singular: bed.
Laminated	Alternating layers of varying material or color with layers less than 1/4-inch thick; singular:
F igure d	lamination.
Fissured	Breaks along definite planes or fractures with little resistance.
Slickensided	Fracture planes appear polished or glossy; sometimes striated.
Blocky	Cohesive soil that can be broken down into small angular lumps that resist further
Lensed	breakdown. Inclusion of small pockets of different soils, such as small lenses of sand scattered through
lomogeneous	a mass of clay. Same color and appearance throughout.

Wastewater Treatment Plant Improvements Wasilla, Alaska

SOIL DESCRIPTION AND LOG KEY

June 2016

32-1-02452

FIG. A-1 Sheet 3 of 3

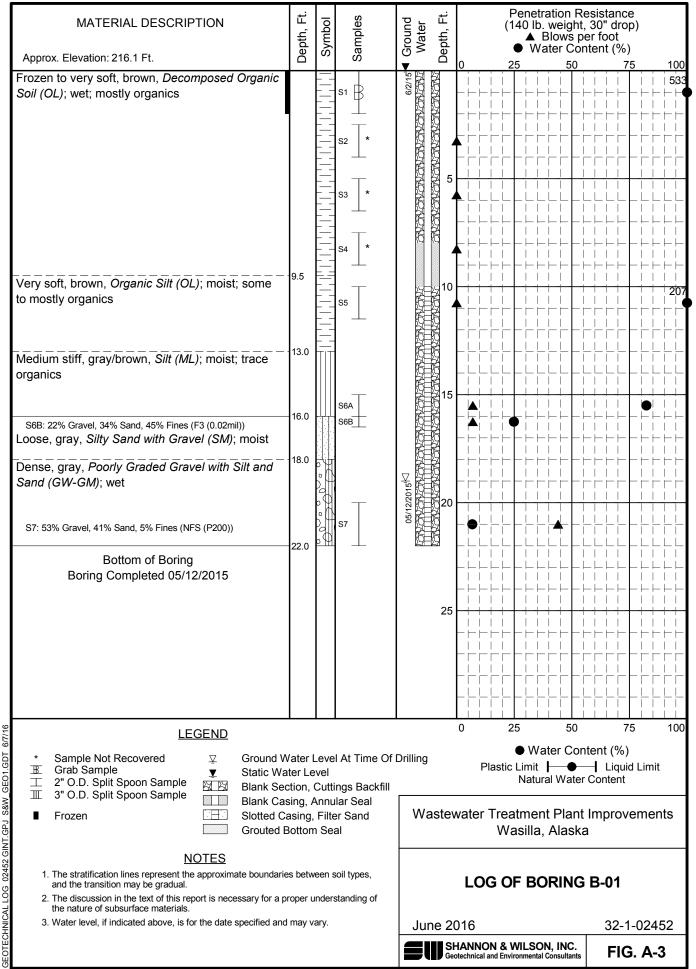
FROST CLASSIFICATION

(after Municipality of Anchorage, 2007)

GROUP		0.02 Mil.	P-200*	USC SYSTEM (based on P-200 results)
	Sandy Soils	0 to 3	0 to 6	SW, SP, SW-SM, SP-SM
NFS	Gravelly Soils	0 to 3	0 to 6	GW, GP, GW-GM, GP-GM
F1	Gravelly Soils	3 to 10	6 to 13	GM, GW-GM, GP-GM
F2	Sandy Soils	3 to 15	6 to 19	SP-SM, SW-SM, SM
ΓZ	Gravelly Soils	10 to 20	13 to 25	GM
	Sands, except very fine silty sands**	Over 15	Over 19	SM, SC
F3	Gravelly Soils	Over 20	Over 25	GM, GC
	Clays, PI>12			CL, CH
	All Silts			ML, MH
	Very fine silty sands**	Over 15	Over 19	SM, SC
F4	Clays, PI<12			CL, CL-ML
	Varved clays and other fined grained, banded sediments			CL and ML CL, ML, and SM; SL, SH, and ML; CL, CH, ML, and SM

*Approximate P-200 value equivalent for frost classification. Value range based on typical, well-graded soil curves.

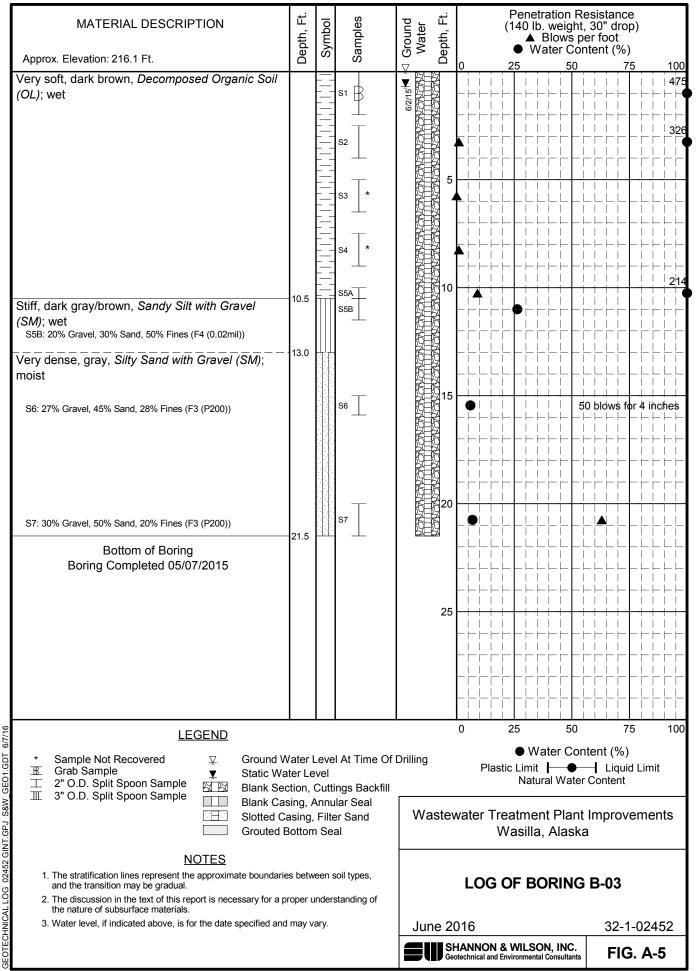
** Very fine sand : greater than 50% of sand fraction passing the number 100 sieve

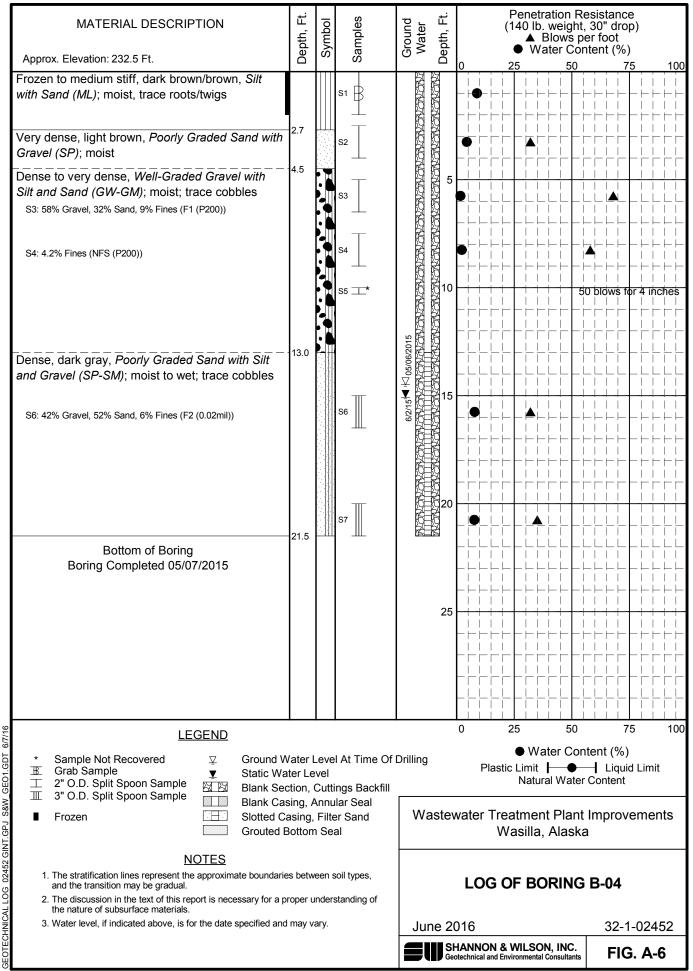

Wastewater Treatment Plant Improvements Wasilla, Alaska

FROST CLASSIFICATION LEGEND

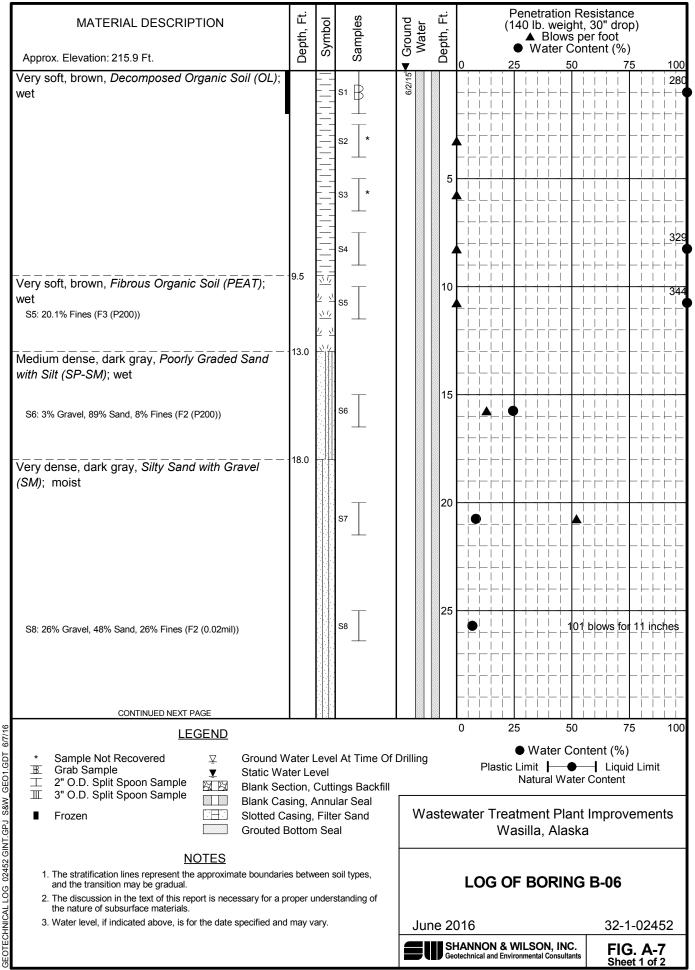
Jur	ne	2016	
		SHANNON & WILSON, INC.	
		Control & Faulterentel Consultants	

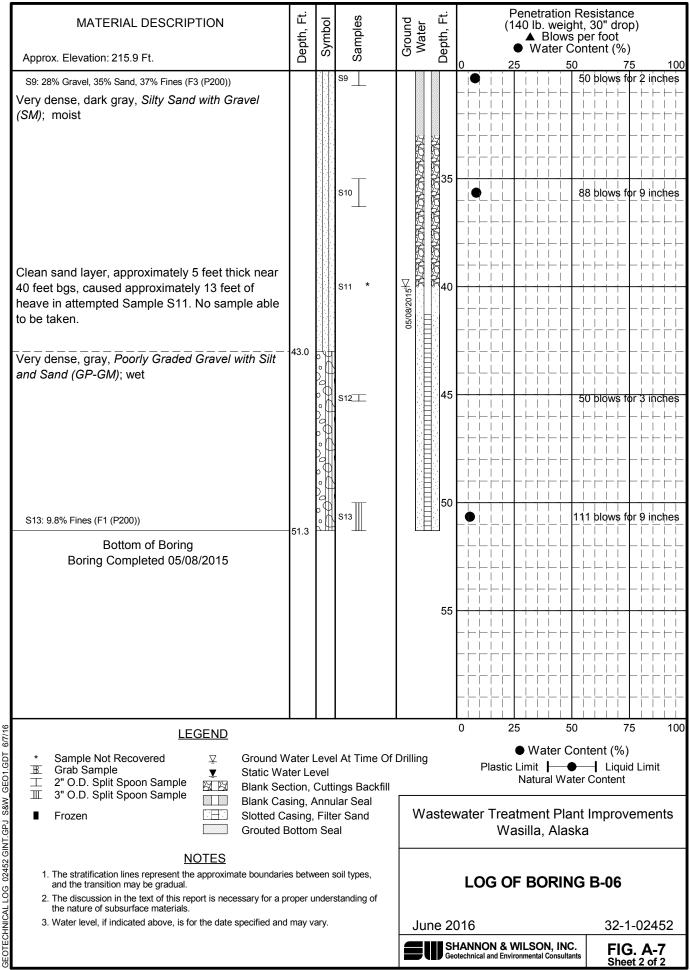
32-1-02452


FIG. A-2

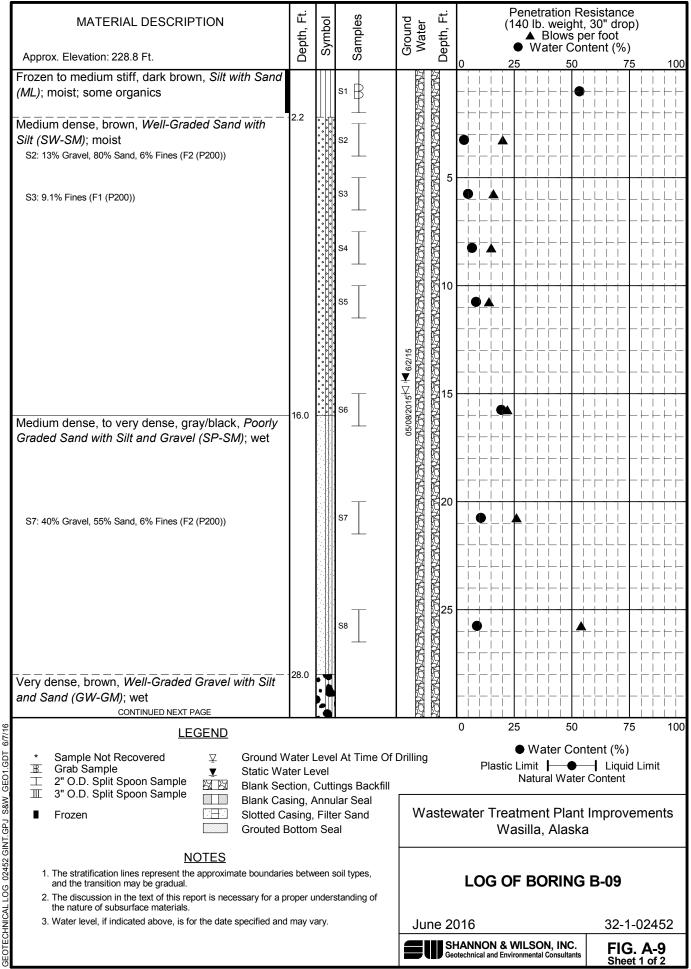


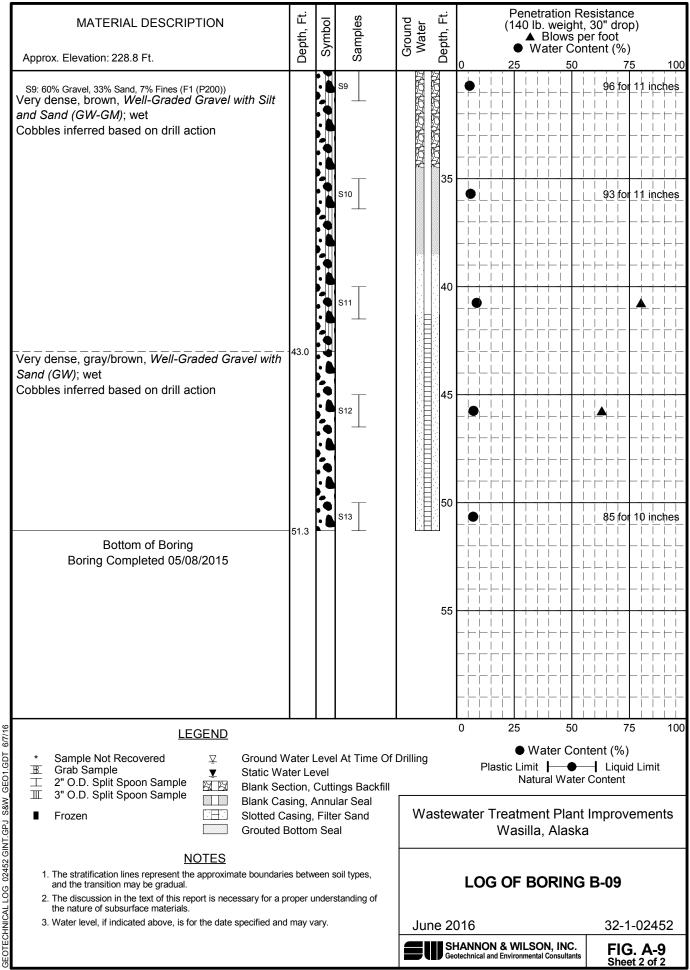
REV 3 - Approved for Submittal



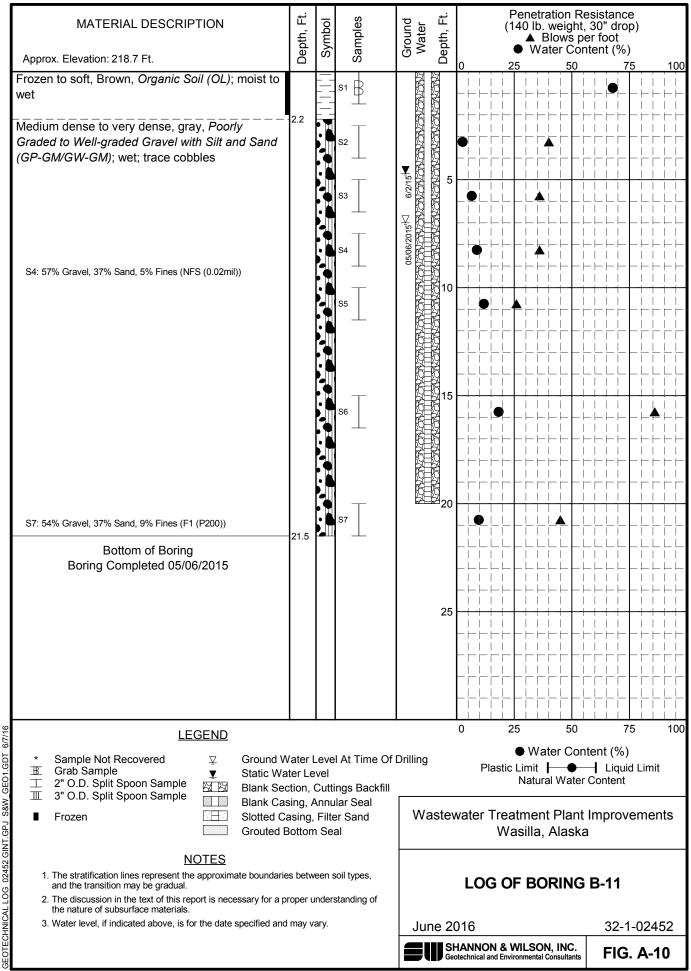

REV 3 - Approved for Submittal

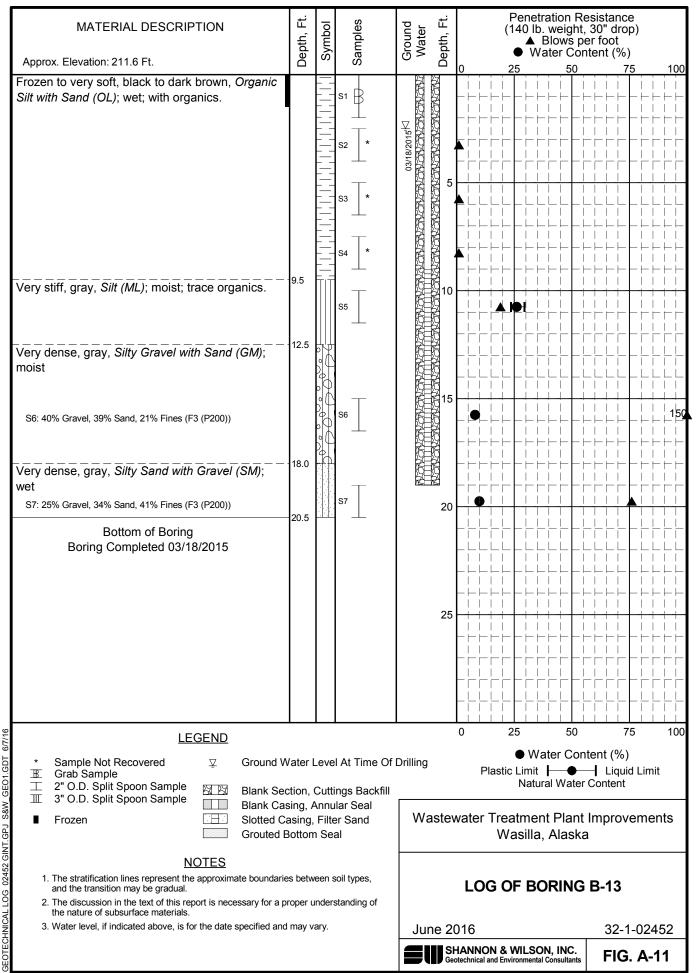
REV 3 - Approved for Submittal

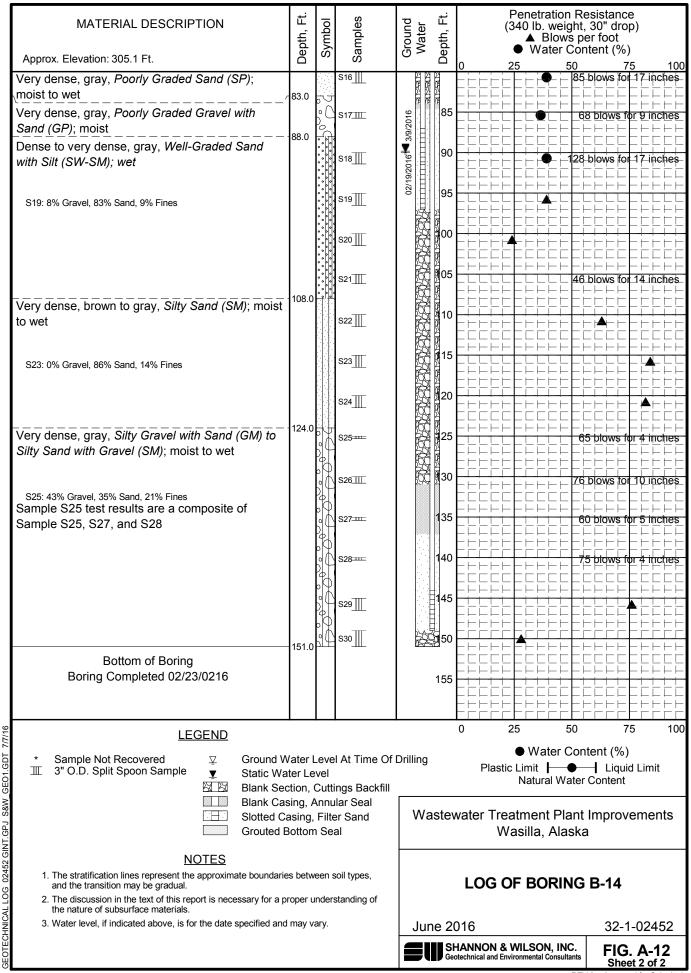


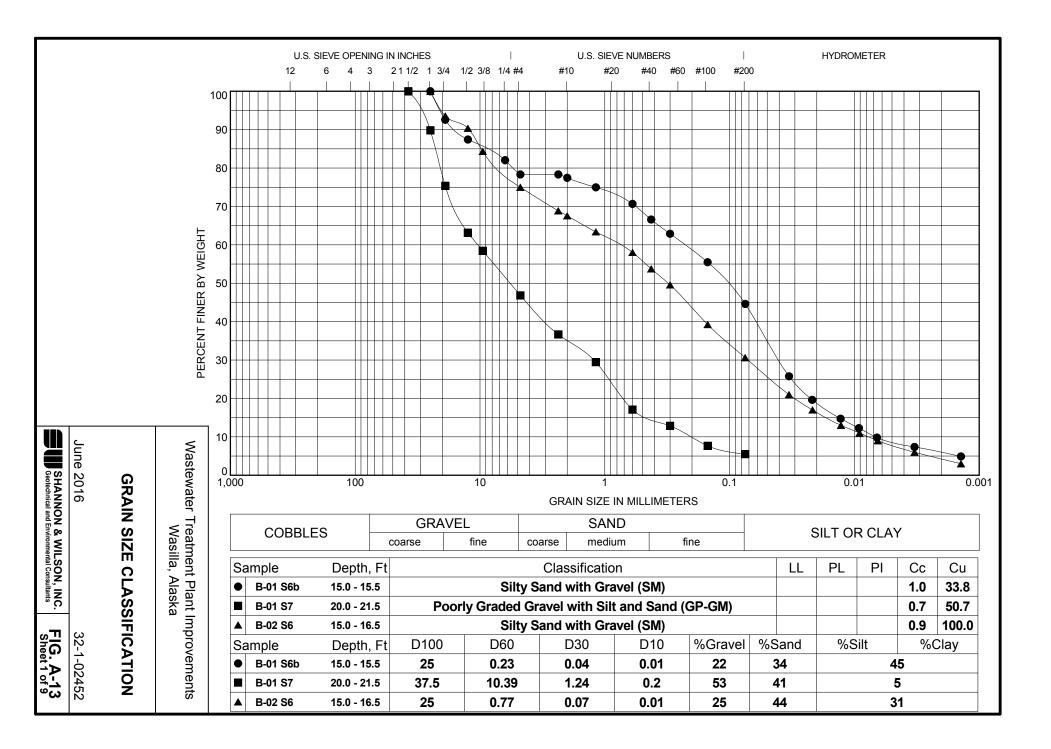


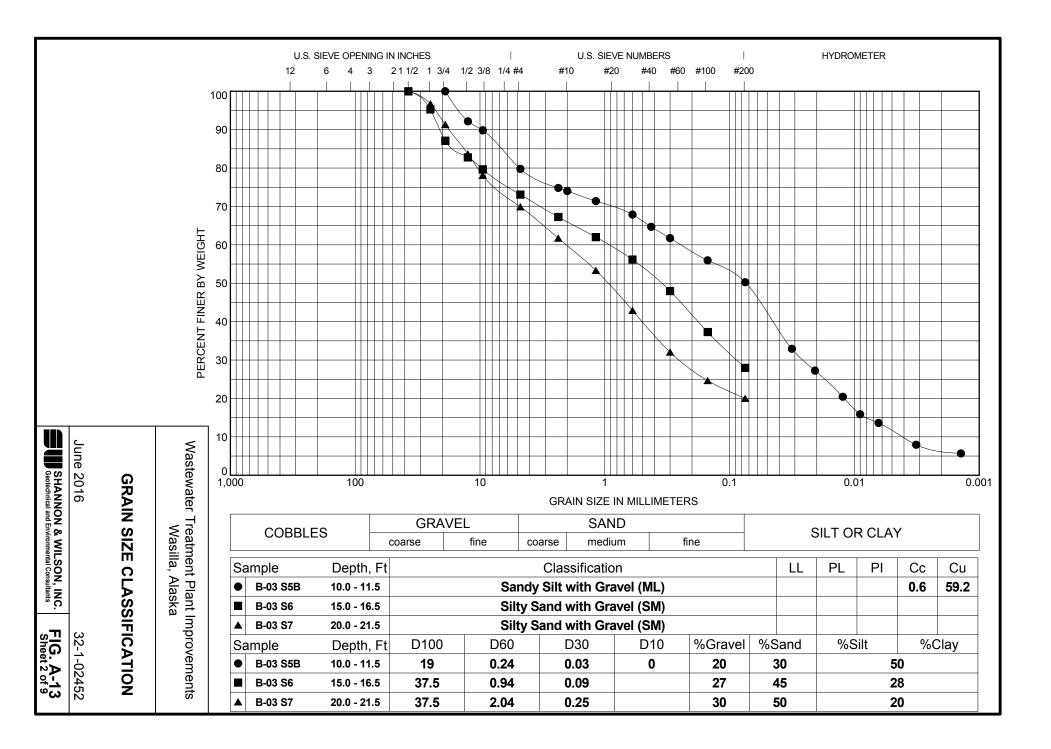
REV 3 - Approved for Submittal

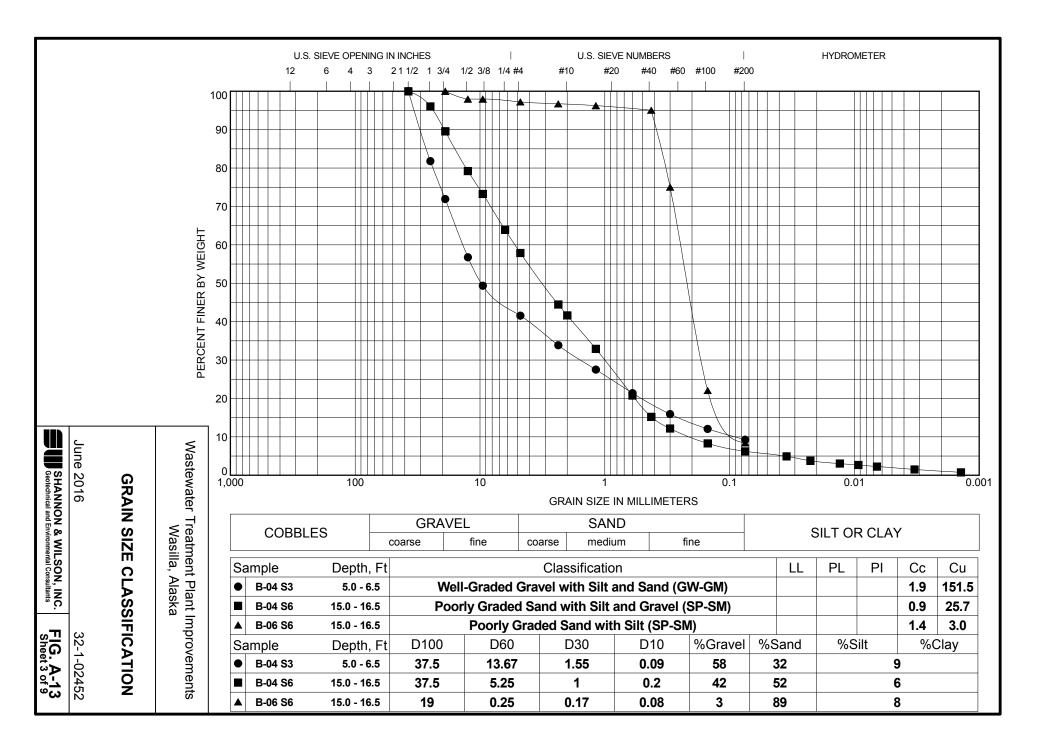

MATERIAL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth. Ft.				40 I	b. w Blo	ion F eigh	it, 30 per)" dr foot	op)		
Approx. Elevation: 215.1 Ft.	De	Ń	Sa	⊡ > ▼	De	0		2	• v 5	vate	er Co 50	nie	nt (%	%) 75		100
Frozen to very soft, brown, <i>Decomposed Organic</i> <i>Soil (OL)</i> ; wet				61215 2014/014/014/014/014/014/014	LONGONGONGONGONGON											605 - - 721 - - - - 898
Medium stiff, gray/brown, <i>Silt with Sand (ML)</i> ; moist; trace organics	7.0			K CANCANCON	NOVER VE											
S4: Not Plastic			S4	05/11/2015 ¹ 0	ACC A	Li4	≜ i i - ⊢ ⊦	'i -⊢	Pi ⊢⊢	 ⊢⊢	í ⊢⊢⊢	іі - — н	 			
Medium dense, gray, <i>Poorly Graded Sand with</i> <i>Silt and Gravel (SP-SM</i>); wet	9.5			05/11	ENERAL	0										
S5: 27% Gravel, 68% Sand, 5% Fines (NFS (P200))				ALCAN	ACAN		-	 - -								
Very dense, gray, <i>Poorly Graded Gravel with Silt and Sand (GP-GM)</i> ; wet; trace cobbles	13.0			ZALCAL	NGWGW		- _ - _	- _ - _ 						 		
S6: 48% Gravel, 41% Sand, 11% Fines (F2 (0.02mil))			s6		2 MARANA	5	┛	 -								↓ ↓ - -
Dense to very dense, gray, <i>Poorly Graded Sand</i> with Silt and Gravel (SP-SM) grading to Poorly Graded Sand with Gravel (SP); wet	- 23.0		s7													
CONTINUED NEXT PAGE			S8		2											
LEGEND						0		2	5		50			75		100
I Grab Sample ▼ Static Wa	ater Le ction, sing, <i>i</i> asing	evel Cut Ann , Filt	er Sand	_		ewat		rea	Limi Nat	t - ural ent	Vate	er Co	Liq	uid L It		ts
NOTES 1. The stratification lines represent the approximate boundarie and the transition may be gradual. 2. The discussion in the text of this report is necessary for a p the nature of subsurface materials.	roper ı	unde				L	OG	6 0	FΒ	OR	lNC	GΒ	-08			
Water level, if indicated above, is for the date specified and	I may \	/ary.		Ju		2016 SHAN Beotechr	NON	I & V d Envi	VILS	ON, tal Cor	INC.	s	FI	-1-0 G. ,	A-8	}

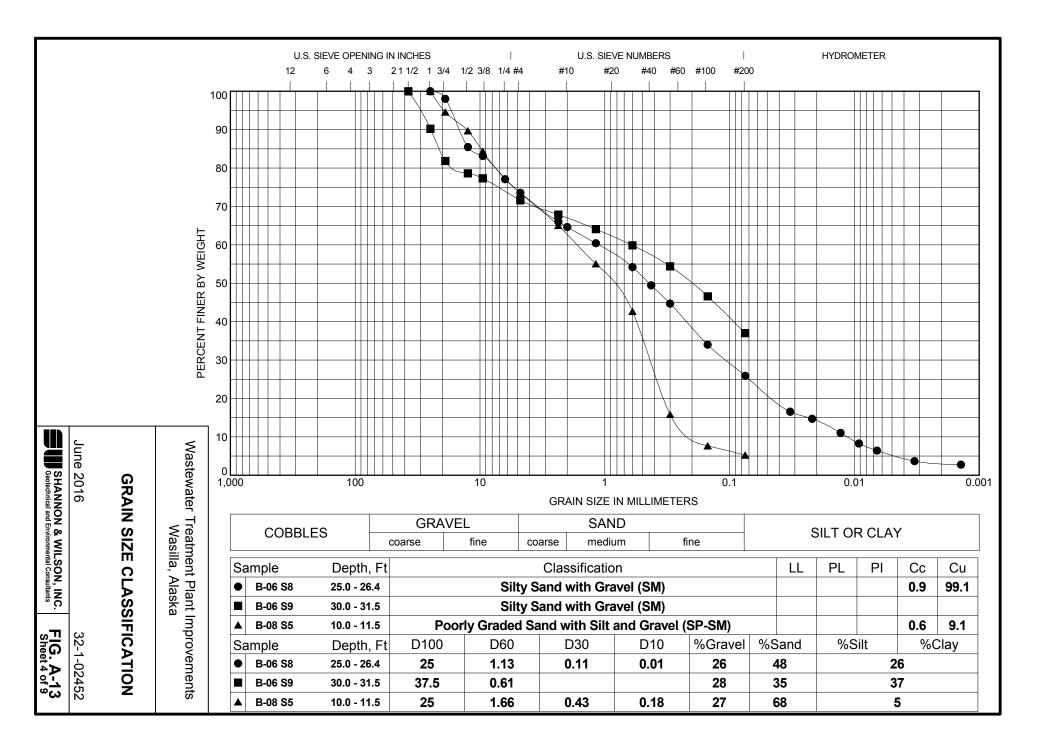


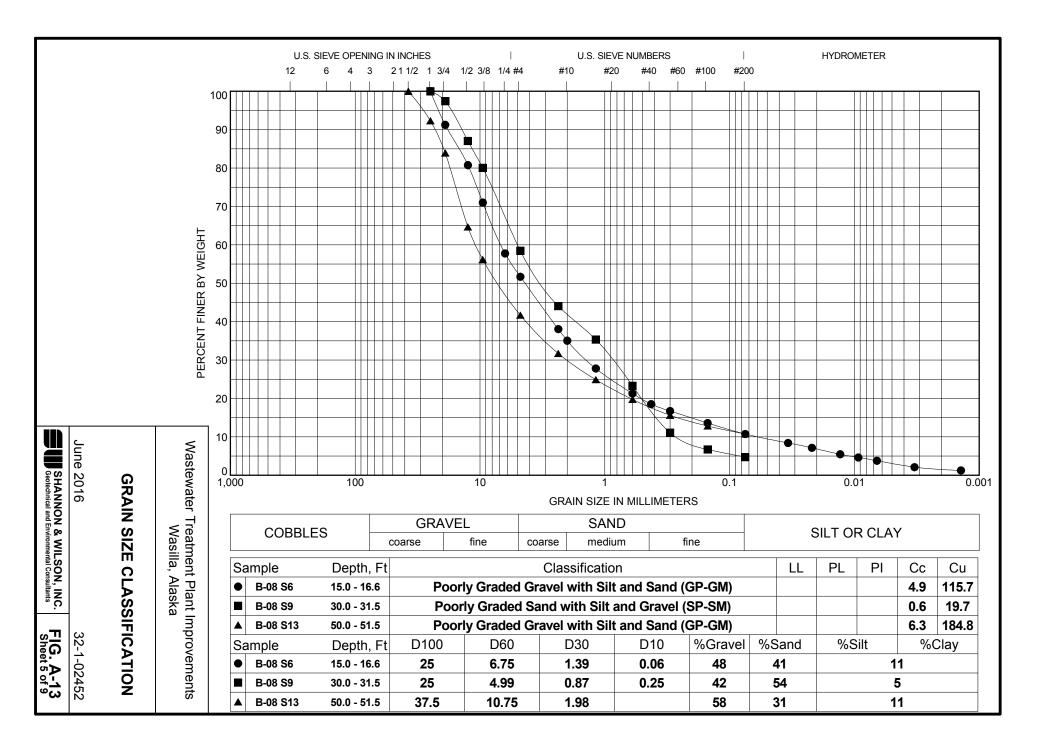

REV 3 - Approved for Submittal

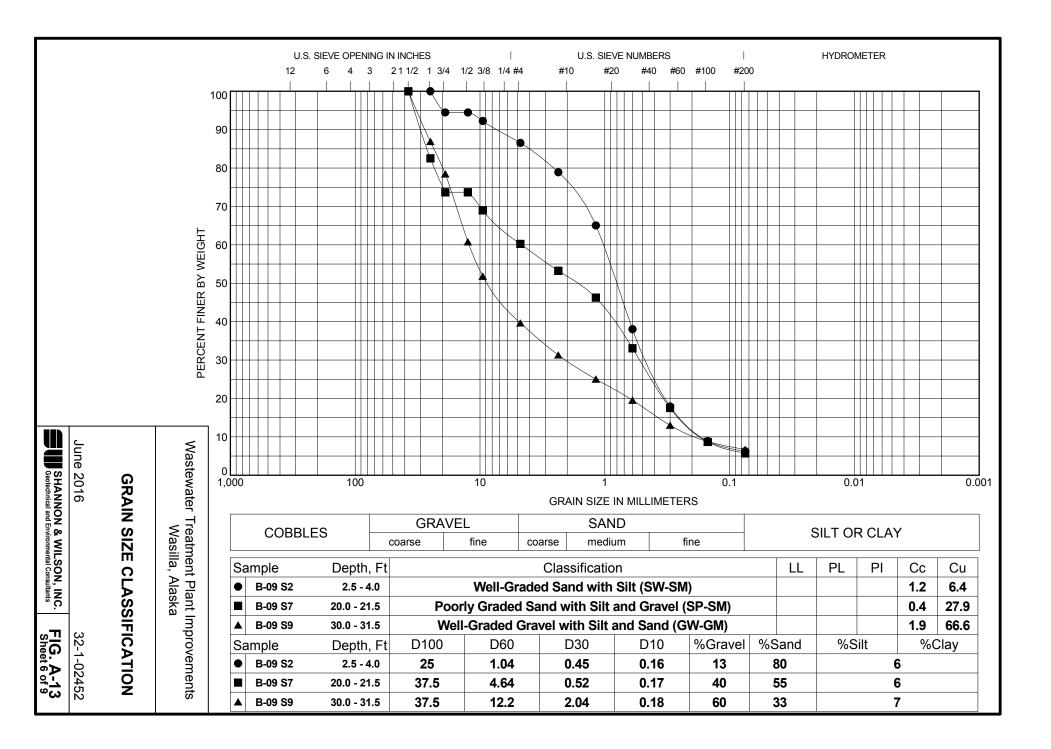

REV 3 - Approved for Submittal

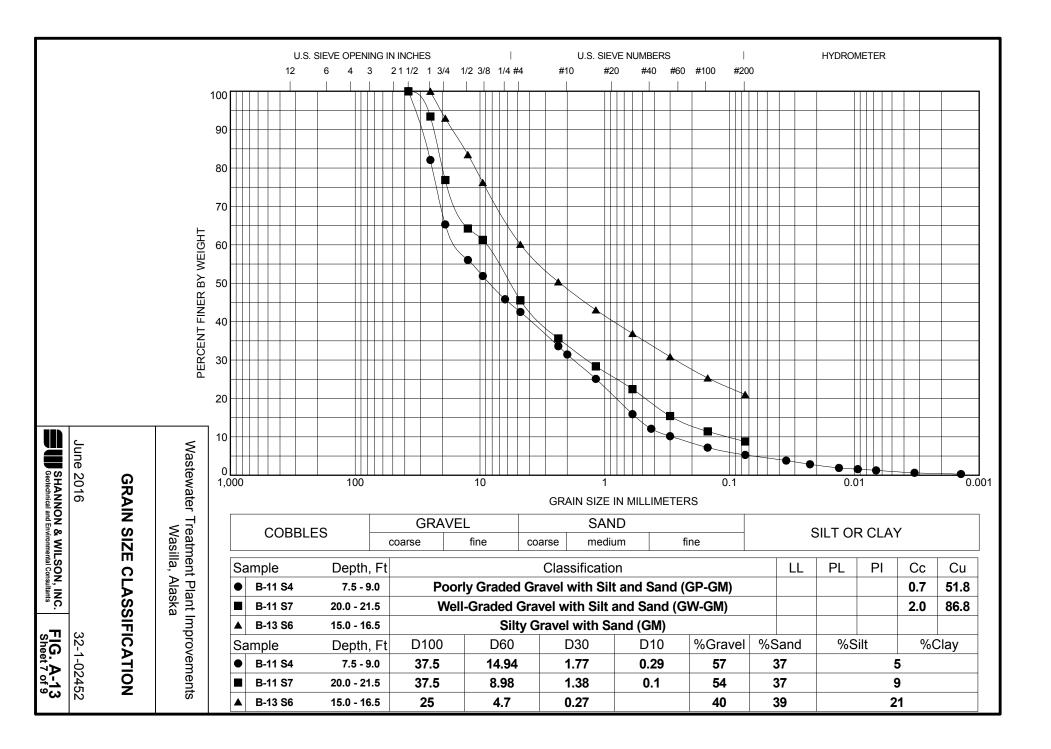


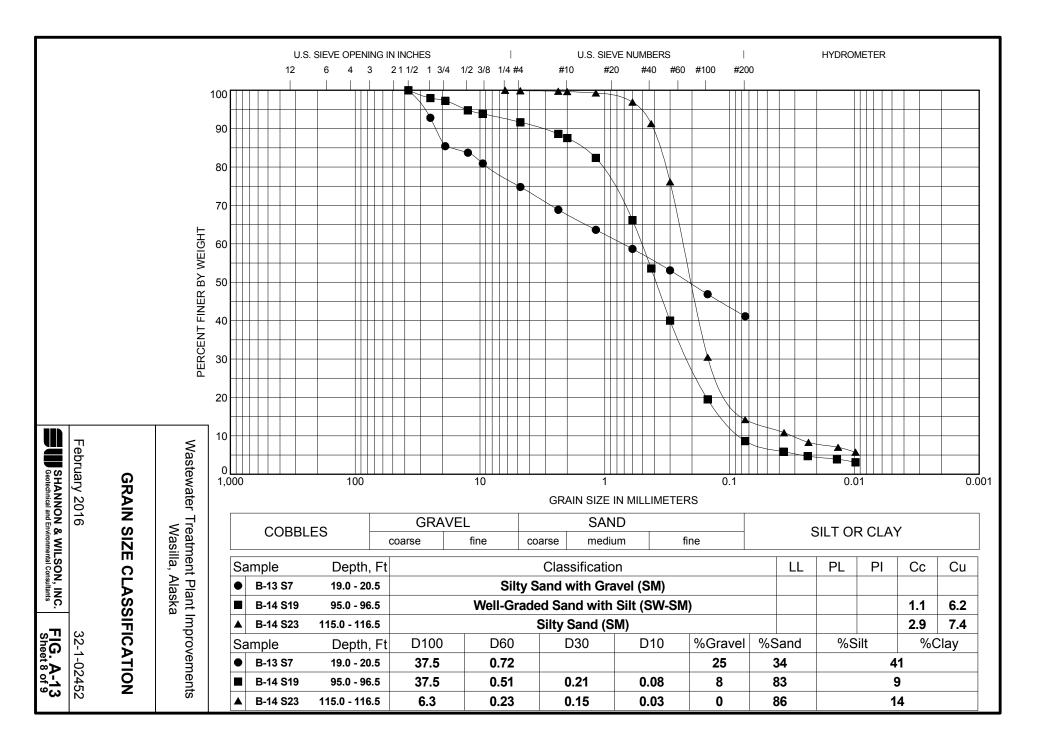

MATERIAL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Penetration Resistance (340 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)
Approx. Elevation: 305.1 Ft.	۵	S	Sa	0 -	De	0 25 50 75 100
Organic Mat Dense to very dense, brown, <i>Silty Sand with</i> <i>Gravel (SM</i>); moist; cobbles and possible	1.0		а Ш		5	
boulders based on drill action			S1 Ⅲ S2 Ⅲ	외 방지 방지 방지 방지 방지 외 방지 방지 방지 방지 방지 외 방지 방지 방지 방지 방지	5 10	
			S3 III	지방신	15	
			S4 🎞	시 환지	 15 20 25 30 35 40 45 50 55 	
			S5 ====	BEARAR BEARAR	25	
			S6 *		30	
Very dense, gray, Silty Sand with Gravel (SM);	-37.0		S7 *		35	
moist			S8 ⊐III	ABABA ABABA	40	62 plows for 7 inches
			S9	era era er	45	25 blows for 2 inches
			S10		50	
			S11 <u></u>]]]	BAIBAIB BAIBAIB	55	128 blows for 17 inches
			S12-≖		60	
Very dense, gray, Poorly Graded Gravel with	68.0		S13*	BARARA BARARAR	70	
Sand (GP); moist			S14 S15	김 환자 환자 환자 환자 환자 환자 환자 환자 김 환자 환자 환자 환자 환자 환자 환자 반자 김 환자 환자 환자 환자 환자 환자 변자	65 70 75	
	78.0		010		/ 0	
CONTINUED NEXT PAGE	10.0					
Ⅲ 3" O.D. Split Spoon Sample ¥ Static Wa ☑ ☑ Blank Sec Ⅲ Blank Cas	ater Le ction, (sing, A	evel Cutt Annu				0 25 50 75 100 ● Water Content (%) Plastic Limit Natural Water Content
Slotted Ca	-			Was	stev	vater Treatment Plant Improvements Wasilla, Alaska
<u>NOTES</u> 1. The stratification lines represent the approximate boundarie and the transition may be gradual. 2. The discussion in the text of this report is necessary for a p the nature of subsurface materials.						LOG OF BORING B-14
3. Water level, if indicated above, is for the date specified and	l may v	ary.		June		
					Geo	HANNON & WILSON, INC. FIG. A-12 stechnical and Environmental Consultants Sheet 1 of 2

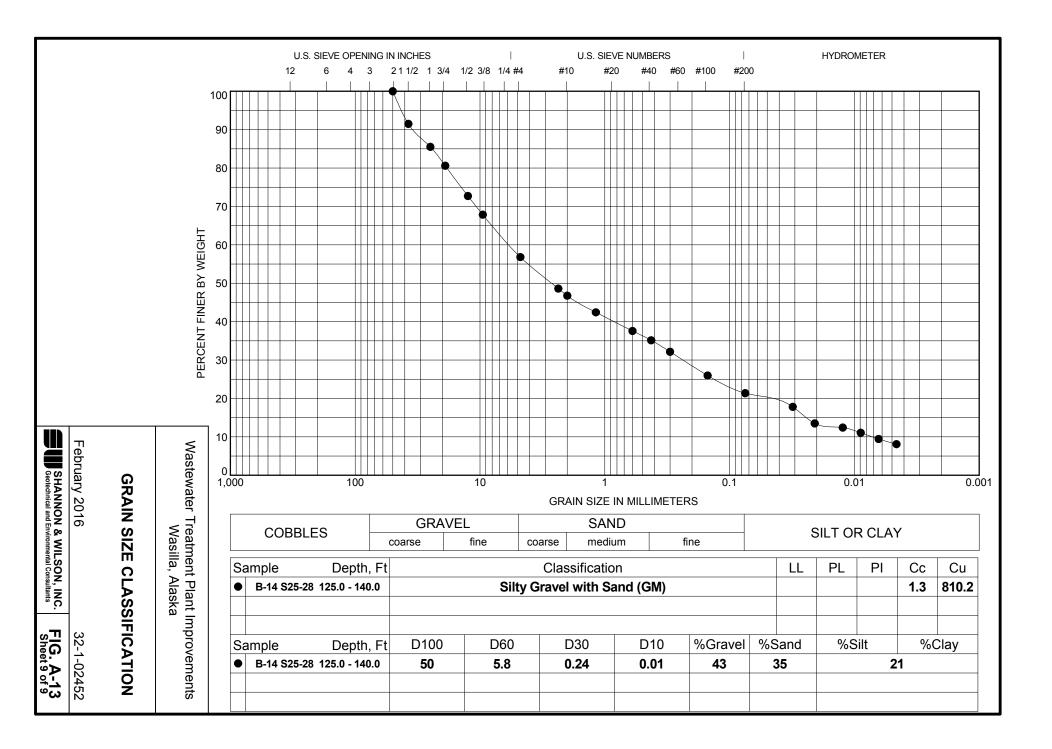


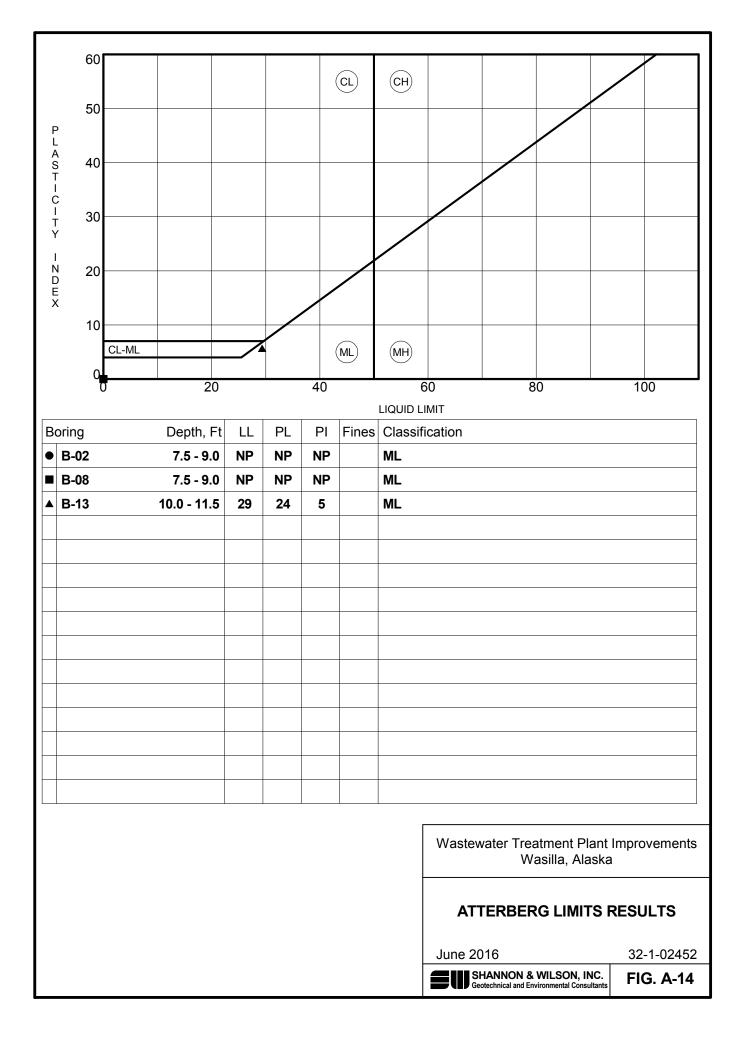

REV 3 - Approved for Submittal



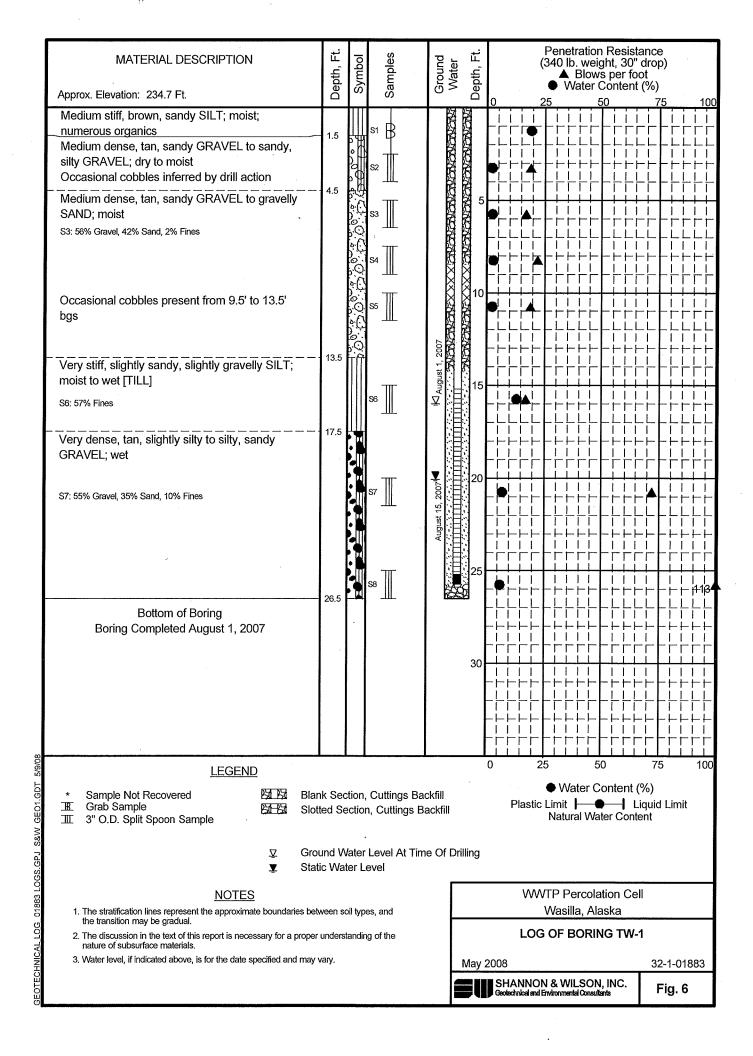


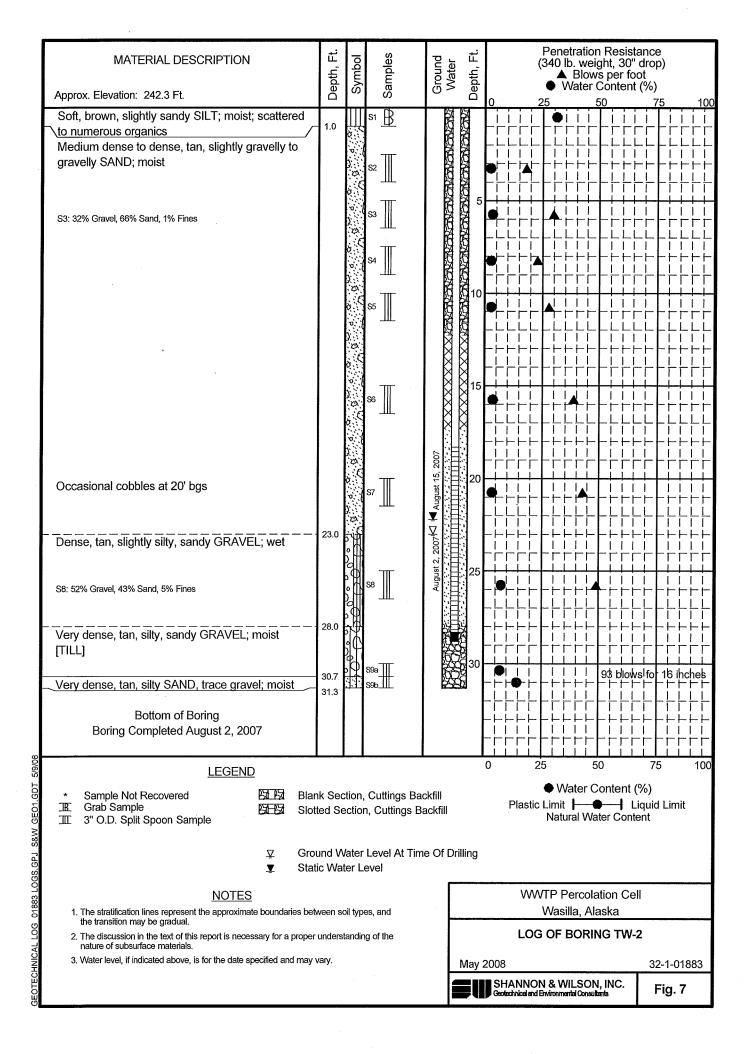




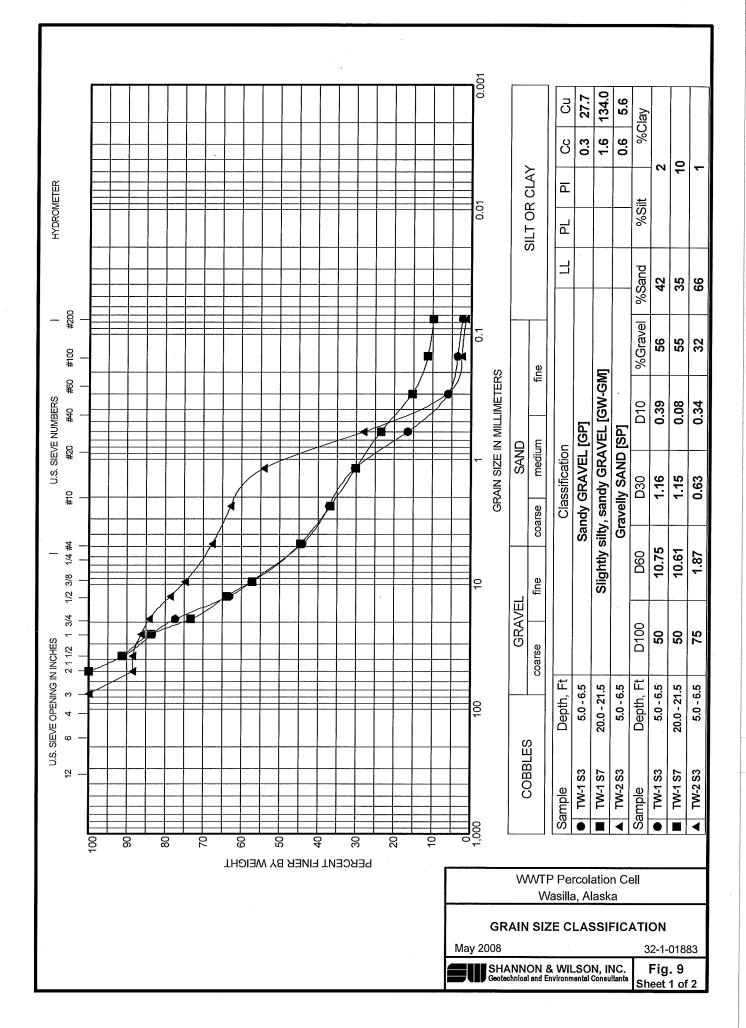


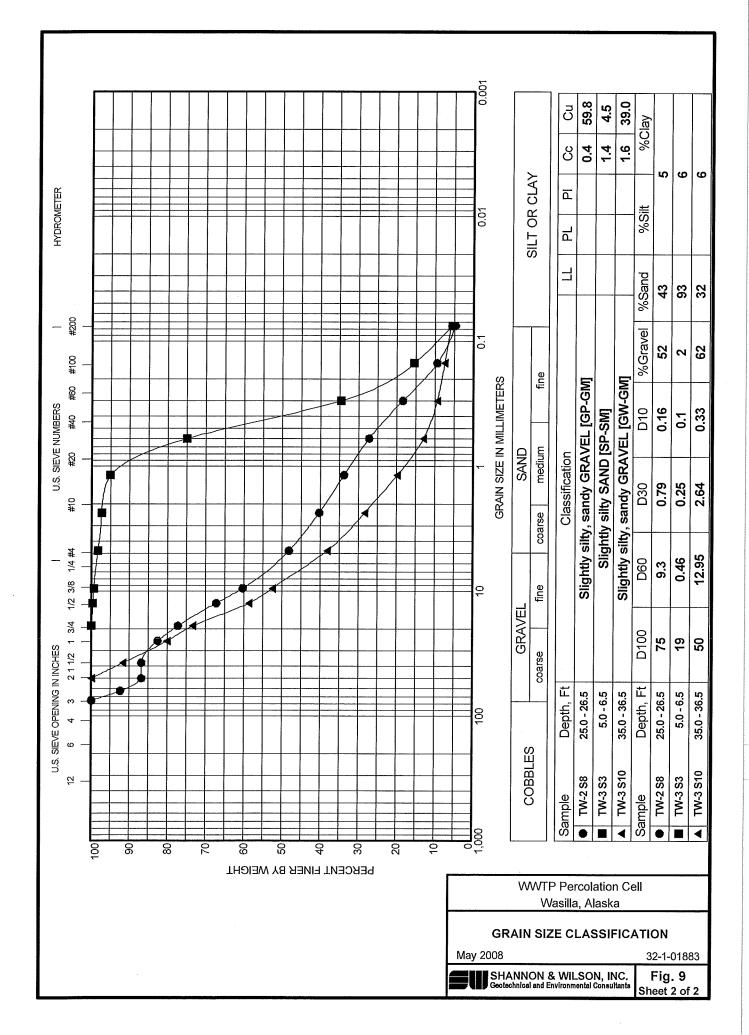
APPENDIX B


PRIOR EXPLORATIONS BY SHANNON & WILSON AND OTHERS


May 2008 Shannon & Wilson, Inc.

Log of Boring TW-1 Log of Boring TW-2 Log of Boring TW-3 Grainsize Classification (2 sheets) Summary of Hydraulic Conductivity Test Results


1986 Gilfilian Engineering, Inc.


Test Boring No. 15 : Grain Size Analysis Test Boring No. 20 : Grain Size Analysis Test Boring No. 26 : Grain Size Analysis Test Boring No. 27 : Grain Size Analysis Test Boring No. 28 : Grain Size Analysis Test Boring No. 33 Test Boring No. 34 Test Boring No. 39 : Grain Size Analysis Test Boring No. 40 : Grain Size Analysis

MATERIAL DESCRIPTION	Depth, Ft.	Svmbol	Samples	Ground	vvater Depth, Ft.	Penetration Resistance (340 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)
Approx. Elevation: 243.8 Ft.	De	Ó	Sa	0	- ос	0 25 50 75 100
Soft, brown, slightly sandy SILT; moist; scattered organics Medium dense, tan SAND to slightly silty SAND;	1.5		s1 <u>B</u> s2 ∏		NONON	
S3: 2% Gravel, 93% Sand, 6% Fines	7.0		s3 II			
Dense, slightly gravelly to gravelly SAND; moist		0	\$4 III \$5 III			
		00				
		0.000	se <u>∏</u>	あたのまたのまたの		
Very dense, tan, silty, sandy GRAVEL; moist [TILL]	- 20.8	0.0 0 0	s7 🎹			
S7: 25% Fines			58 🎹	STARY X	225	
			59 III ez	2007	× × • • 30	
Very dense, tan, slightly silty to silty, sandy	- 34.0			▲ MAugust 3, 2007	35	
GRAVEL; wet [TILL] S10: 62% Gravel, 32% Sand, 6% Fines		$\sim 0 0 ()$	S10 <u></u>	August 15, 2007		╴ <mark>♥</mark> ╴╎╴╴╴╴╴╴╴╸ ╴┌┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍ ╴┝┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍
	43.5		s11	1 Start Mart	40	┍╪┽┽╪╼╕┽┾╴╪╪╪╴╪╶╪╶╪╶╪╼┾ ┑┝╸┝╴╞╸╞╸┝╺┝╴┝╴┝╴┝╴┝╴╞╴╞╴╞╴╞╸┝ ┙╘╵└╘╵╘╴┍╴┝╴┝╴┝╴┝╴┝╴┝╴┝╴┝╴┝ ┍
Bottom of Boring Boring Completed August 3, 2007					45	
800						
			n, Cuttings B on, Cuttings			Water Content (%) Plastic Limit Natural Water Content
S Tal y Gro Y Sta Sta	ound W tic Wa		r Level At Ti ₋evel	me Of I	Drilling	
 NOTES 1. The stratification lines represent the approximate boundaries be the transition may be gradual. 	tween s	oil typ	oes, and			WWTP Percolation Cell Wasilla, Alaska
 2. The discussion in the text of this report is necessary for a proper nature of subsurface materials. 		tandi	ng of the			LOG OF BORING TW-3
3. Water level, if indicated above, is for the date specified and may	vary.				Мау	2008 32-1-01883
GEOTE						SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Fig. 8

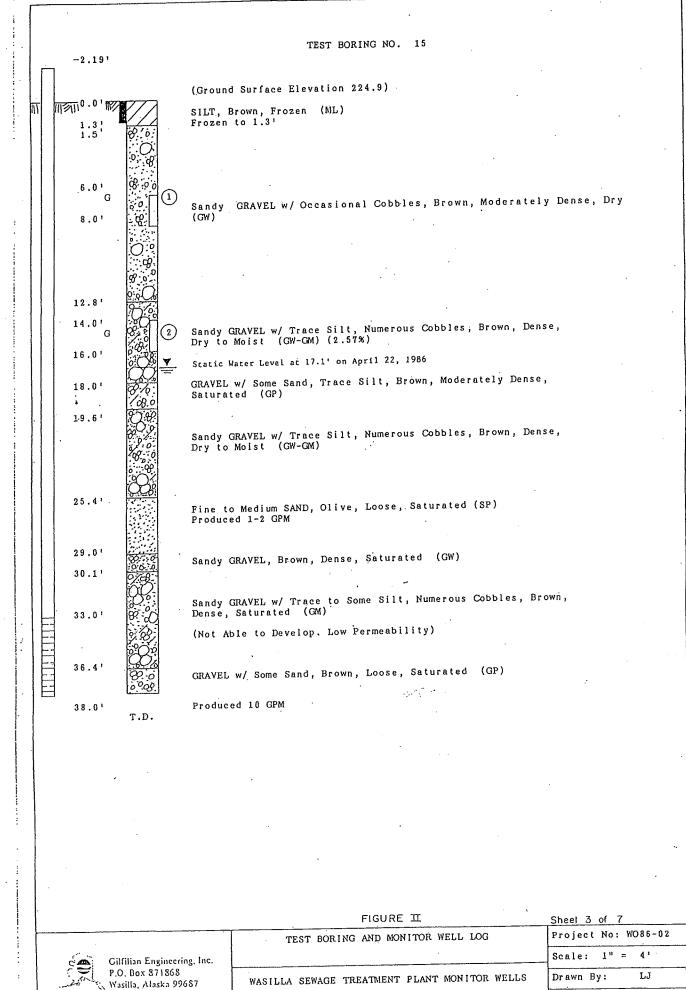
SHANNON & WILSON, INC.

TABLE 1

MONITORING WELLS TW-1, TW-2, AND TW-3 CONDUCTIVITY TEST RESULTS SUMMARY OF HYDRAULIC

Monitoring Well Date Designation	Date Tested	Saturated Screened Interval (feet bgs)	Soil Type Summary Description	Hydraulic Conductivity Range (cm/s)
TW-1 8/1:	8/15/2007	20.0 to 25.3	slightly silty to silty, sandy gravel	4×10^{-4} to 9×10^{-3}
TW-2 8/1:	8/15/2007	22.2 to 28.0	slightly silty, sandy gravel	8×10^{-4} to 5×10^{-3}
TW-3 8/1:	8/15/2007	34.9 to 41.0	slightly silty to silty, sandy gravel	$6 \times 10^{-4} \text{ to } 8 \times 10^{-3}$

Notes:

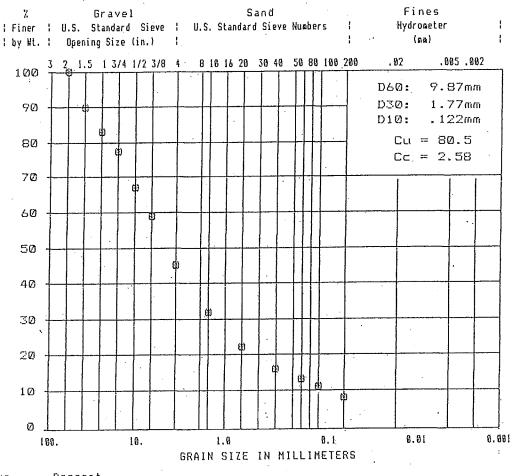

below ground surface; cm/s = centimeters per second
 Hydraulic conductivity values were derived using the method of Bouwer and Rice (1976, 1989).

32-1-01883, Wastewater Treatment Plant Percolation Cell, Wasilla, Alaska

SAHPLER TYPE SYNOUS . . . SHELBY TUBE St 1.4" SPLII SPOON WITH 47 # HAMMER . . . HODIFIED SHELBY TUBE SS 1.4" SPLIT SPOON WITH 140 # HAPHER . PITCHER BARREL S1 2.5" SPLII SPOON WITH 140 # HAHMER . . CORE BARREL WITH SINGLE TUBE Sh 2.5" SPLIT SPOON WITH 340 # HAMMER . . CORE BARREL WITH DOUBLE TUBE . Sx 2.0" SPLIT SPOON WITH 140 # HAMHER . . . BULK SAMPLE S= 1.4" SPLI1 SPOON WITH 340 # HANKER A. ... AUGER SAMPLE Sp 2.5" SPLIT SPOON, PUSHED . GRAS SAMPLE 6. 1.4" SPLIT SPOON DRIVER WITH AIR HAMMER Es 2.5" SPLIT SPOON DRIVEN WITH AIR HAMMER Н1 NOTE: SAMPLER TYPES ARE EITHER NOTED ABOVE THE BORING LOG OR ADJACENT TO IT AT THE RESPECTIVE SAMPLE DEPTH. TYPICAL BORING LOG TEST HOLE NUMBER SAMPLER TYPE DATE DRILLED 5 JUN 79 All Samples S: (P1) NRGANIC HATERIAL Considerable Visible Ice ~~ 0' - 7' ICE + KL--ICE DESCRIPTION (]CE+KL) ICE-SILT, Brown & Clear FROZEN INTERVAL \bigcirc 90, 56.2% STRATA CHANGE Sandy SILI, Brown, Stiff, Koist (HL) SANPLE NUNBER BLOWS/FOOT GRADATIONAL CHANGE OISTURE CONTENT UNIFIED SOIL CLASSIFICATION SAMPLER TYPE 72, 10.EX, 115.7 pcf, 35 T, GPT DENSITY TEMPERATURE GENERALIZED SOIL OR Sandy GRAVEL, Brown, Boderately ROCK DESCRIPTION (C.º) Dense, Koist WATER TABLE. + 22.01 26.0' (D BEDROCK (Schist) Cd (8X) 30.012 1.0. TOTAL DEPTH DRILLED *N.D. - WHILE DRILLING, A.D. - AFTER DRILLING Date N/A MAT-SU TEST LAB Initials TEST HOLE LEGEND P.O. Box 871868, Wasilla, Alaska 99687 1 1 Sheet - 10071 276 2006 -

SANDY SILT IGNEOUS ROCK COBBLES' & BOULDERS DRGANIC KATERIAL SILT GRADING 10 KELAKORPHIC ROCK CONGLOKERA1(SANDY SILI CLAY SANDY GRAVEL, JCE, HASSIVE SCATTERED COBBLES SANDSTONE SILT (ROCK FRAGHENIS) INTERLAYERED SAND ICE - SILT HUDSTONE SAND C SAHDY GRAVEL SILTY CLAY W/ TRACE DRGANIC SIL1 LIKESIONE GRAVEL

STANDARD SYNBOLS

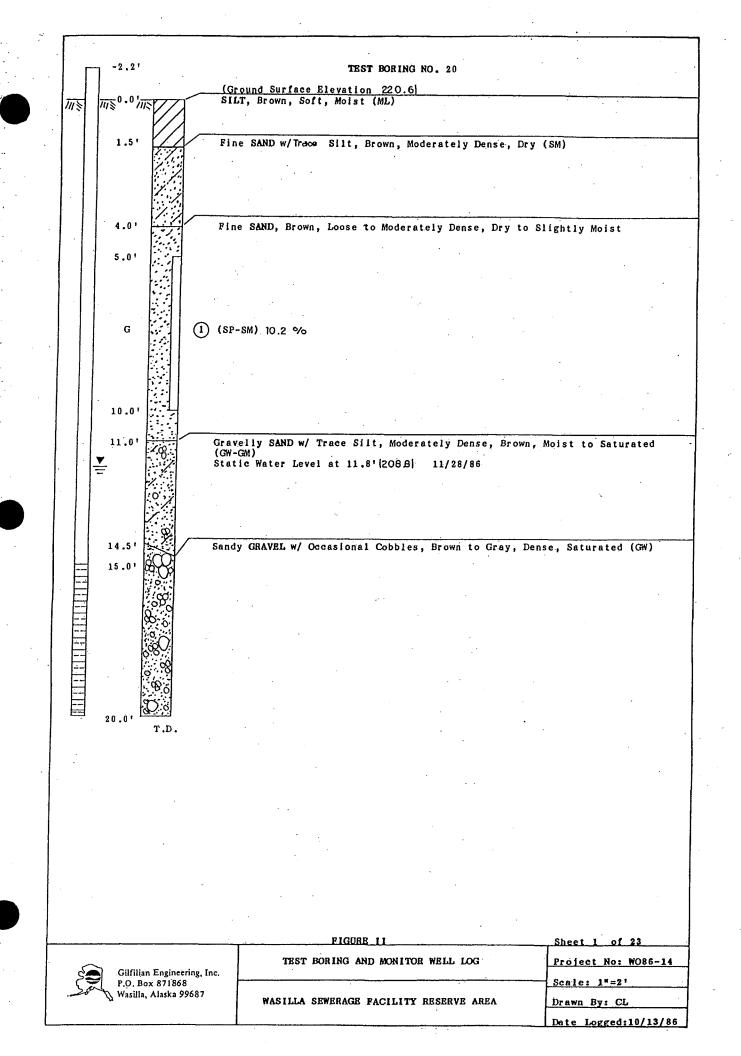

Date Logged: 3-20-86

MAT-SU TEST LAB, INC.

Soils – Concrete – Water Field and Laboratory Testing Services

P.O. Box 871868 • Wasilla, Alaska 99687 • (907) 376-3005

GRAIN SIZE ANALYSIS



Sieve	Percent	
Sizes	Passing	
2 in.	100	USC: GW-GM
1.5 in.	9 Ø	
l in.	83 .	Classification: Sandy Gravel w/ Trace Silt
3/4 in.	77	
1/2 in.	. 67	As Received Moisture Content: 2.57%
3/8 in.	59	
#4	45	Date: 2 April 1986 Project Number: 386016
#10	32	
#20	22	Project Name: Wasilla Sewerage Facility
#40	16	
#60	13	Misc. Info.: Boring 15, Sample 2, 14-16'
#100	11	
#200	8.2	<u>Client Name</u> : Gilfilian Engineering

Approved by:

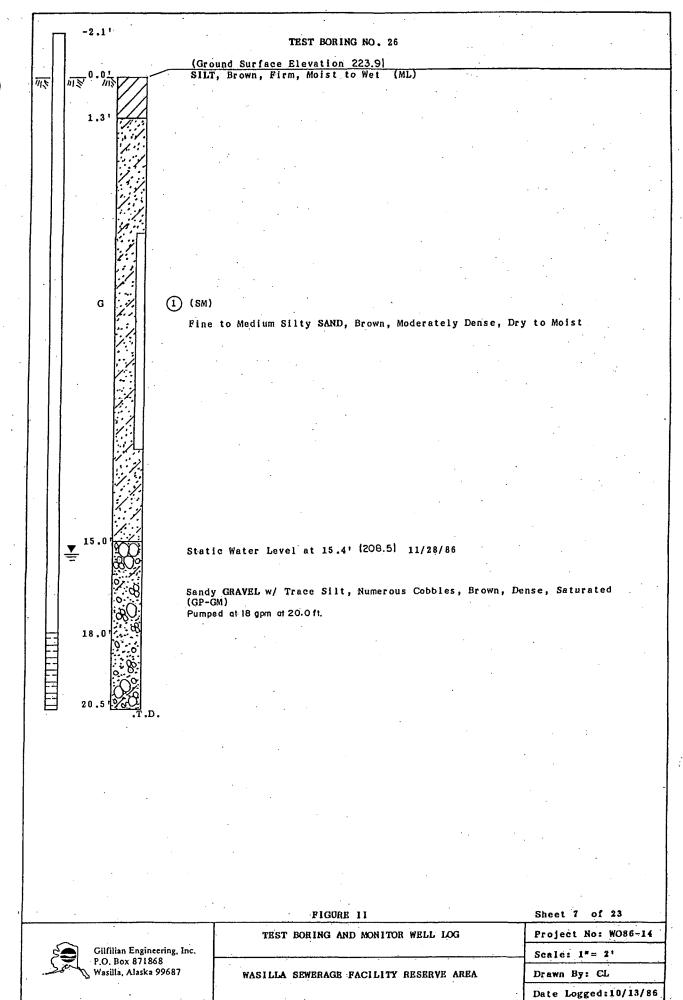
Epientisch

FIGURE III Sheet 2 of 9

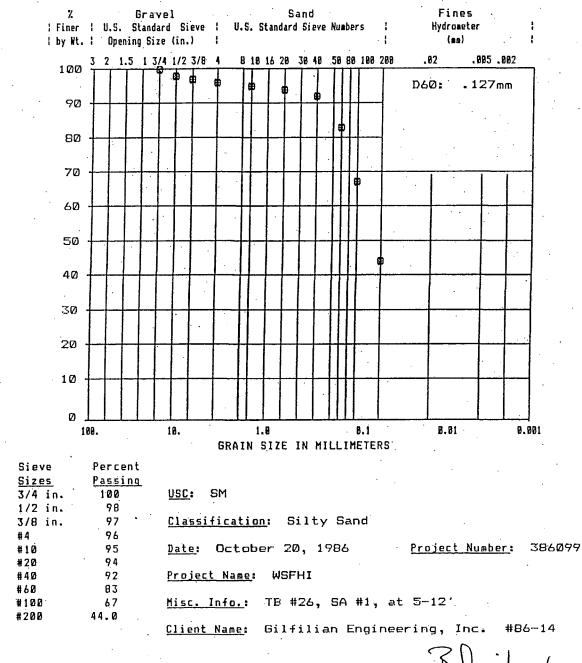
		% iner y Wt.			St		ar d	Si		1				lard		9V6						Fir Hydro (a	aeter		.	
	-		3 3	2 i	.5	13	/4	1/2	3/8	4	8	10	16 :	20	30 /	48	50	90	108 2	200	. [32	. 8	85 .8	102	-
	:	100	Τ	Τ	Γ	Τ	Γ	Î	-	B		p ·	T.		ŀ	T	Π	T	· .	T	D6	Ø:	. 2	29m	m	
		90	4		_	<u> .</u>	<u> </u>	ļ	1_			+	<u> </u>	Ļ	<u> </u>	<u>.</u>	$\left \right $	+		ł	D3	Ø:	. 1	57m	m	
	-				l													•								
		80	+		ŀ	ŀ		+		+	-	╋	+-	┼─	┼╌	+	H	+		1						
								.						.												
•	•	70	+	+	†-	ļ		1-		1		T	1	1	T	Γ	h	忄		· ·						
	•	70															Ľ							ļ	ļ	
		60	T								·			1											·	
		50	-	ļ.		 	ļ	<u> </u>	. 	<u> </u>			–	-		_	$\left \right $	╀		ļ	·					
					ľ											ļ										
		4Ø	+-	-	ŀ				<u> </u>	+	+	┼	╉		$\frac{1}{\cdot}$	┼╌	Ħ	╈		<u> </u>				<u> </u>	†	•
																·										-
		30	t								T	Τ	1	Γ	ŀ		Π	1	B							•
		20	Ľ	·								ŀ				ļ			<u> </u>						L	
		s	T.																							
		10	_							<u> </u>	_	Ļ			ļ	ļ	\prod			<u> </u>						
		Ø											L				Ш							L		
		1	88.				- 1	8.					.9	. –	• • •			* 1	0.1			8.8	1		8.6	181
		•			•					61	R S	ΙN	514	(E	11	H 1	LL	.11	IETEI	ĸs						
	Sieve Sizes			er C 155																			•			
	1/2 in			00		1 <u>.</u>	• •	Ins	uff	ici	er	۱t	Ďat	a	for	a	ñ	50	<u>,</u>							•
	3/8 in	•	1	00 99					eci	fir	·+	in	n •	5	ап	ч	น /	,	Tra	се	Si 1	t				
	#4 #10			97							-								•							
	#20			95			· [As .	Rec	eiv	ec	I M	ois	tu	re	Co	nt	<u>e 1</u>	<u>t</u> :	10	. 27					
	#40 #60			91 69	•		. 1	Dat	<u>e</u> :	Da	=t	σЬ	er	2	7,	19	78	6			Pre	ojec	t Nu	Imbe	<u>r</u> :	386099
	#100			26) - -		4 N	1 ~ ~		1.		ні	,										
	#200		11	.3					jec							•	~	л	щ ,			ז ס <i>ו</i> י	•		•	
						•	<u>.</u>	115	<u>c.</u>	<u>10†</u>	0.	.:				-		•			t 5-					
							ç	<u>:1 i</u>	ent	Na	me	:	Gi	14	Fil	iē	۱n	E	Ingi	nee	≧rir	ŋ,	Inc	•	#86	-14
•																						7) (1	• 1	٥

ANALYSIS GRAIN SI ΖE

Approved by:


FIGURE III Sheet 1 of 18

γω

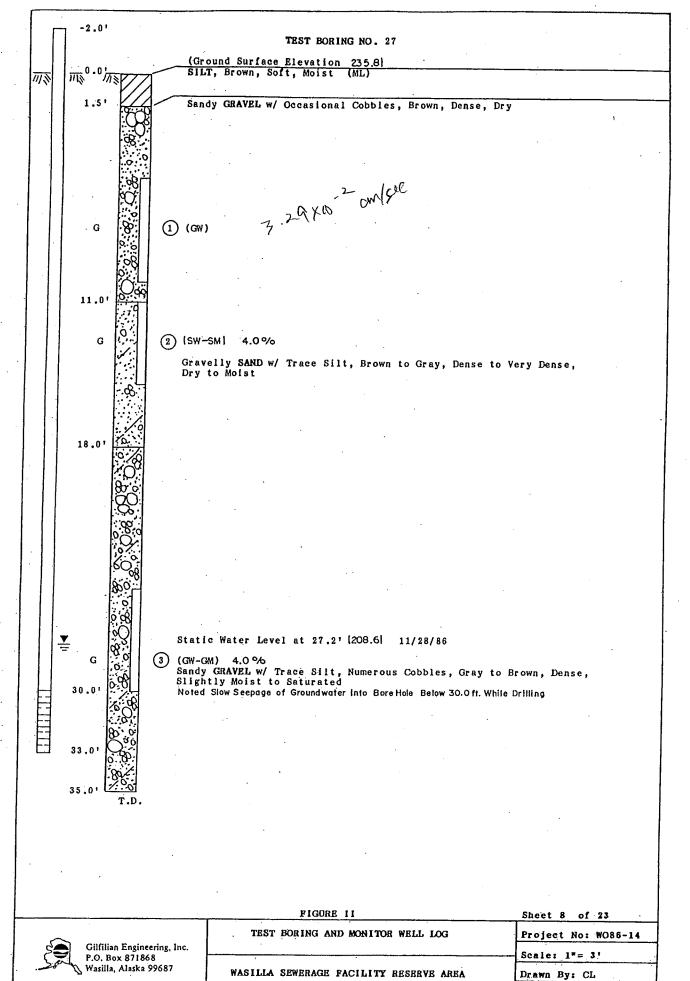

Gilfilian Engineering, Inc.

P.O. Box 871868, Wasilla, Alaska 99687 (907) 376-3005

•

.

Approved by:


FIGURE III

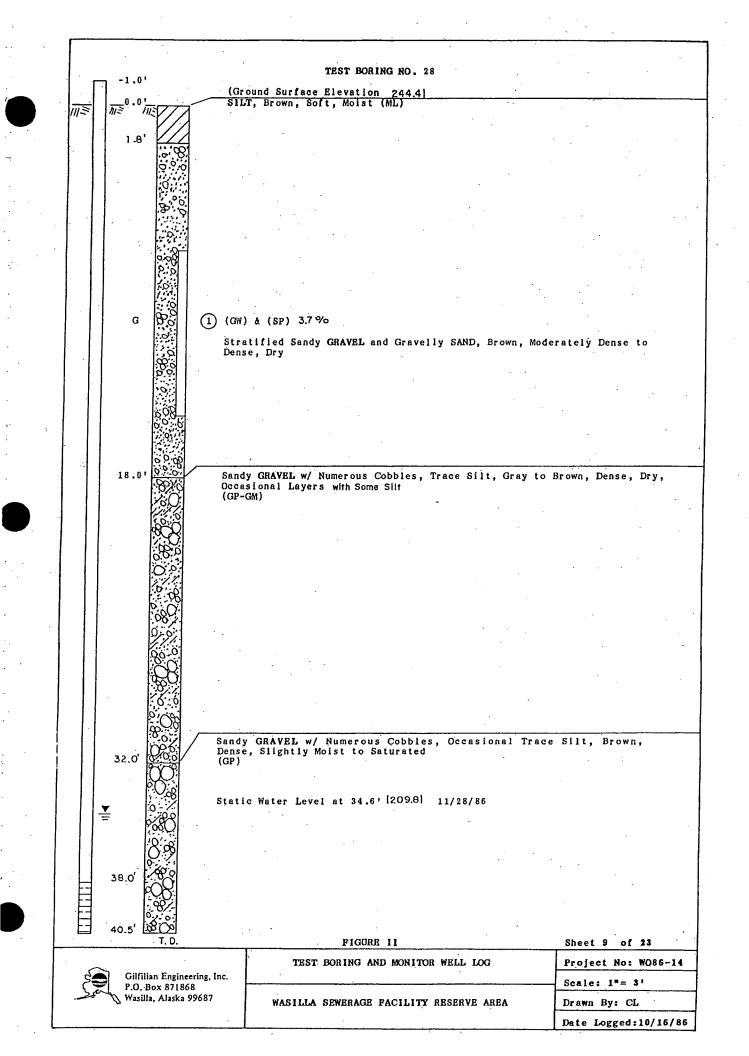
Sheet 6 of 18

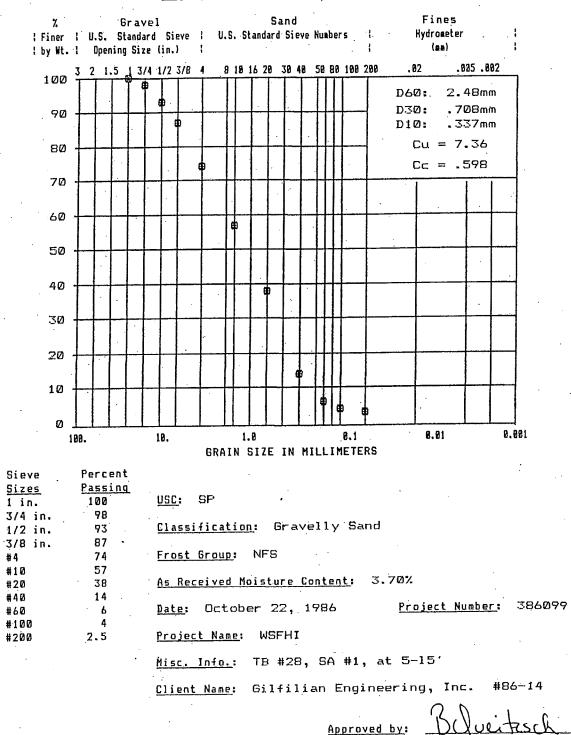
Gilfilian Engineering, Inc.

P.O. Box 871868, Wasilla, Alaska 99687 (907) 376-3005

Ń

RESERVE AREA Drawn By: CL Date Logged:10/16/86


Approved by:

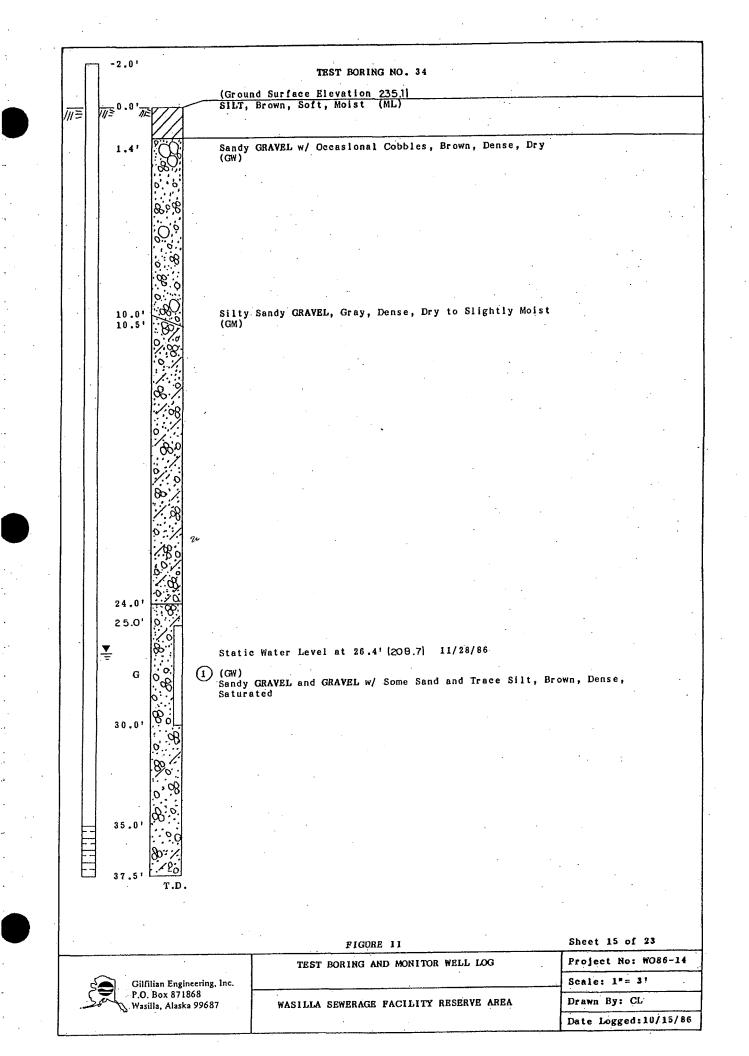

FIGURE III

Sheet 7 of 18

Gilfilian Engineering, Inc.

P.O. Box 871868, Wasilla, Alaska 99687 (907) 376-3005

Gilfilian Engineering, Inc.


P.O. Box 871868, Wasilla, Alaska 99687

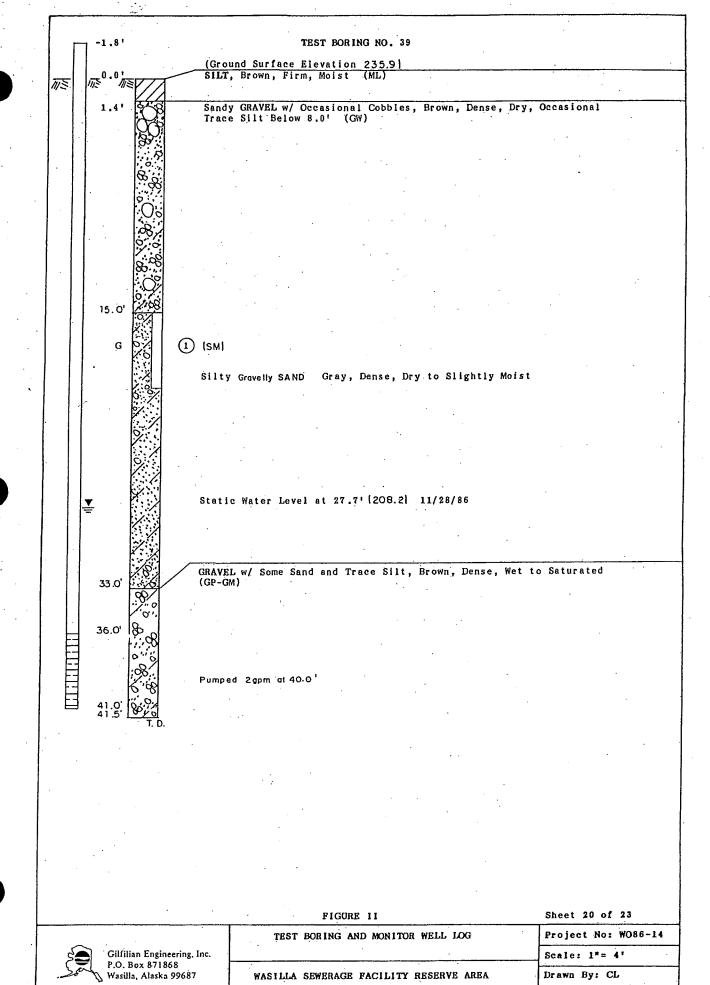
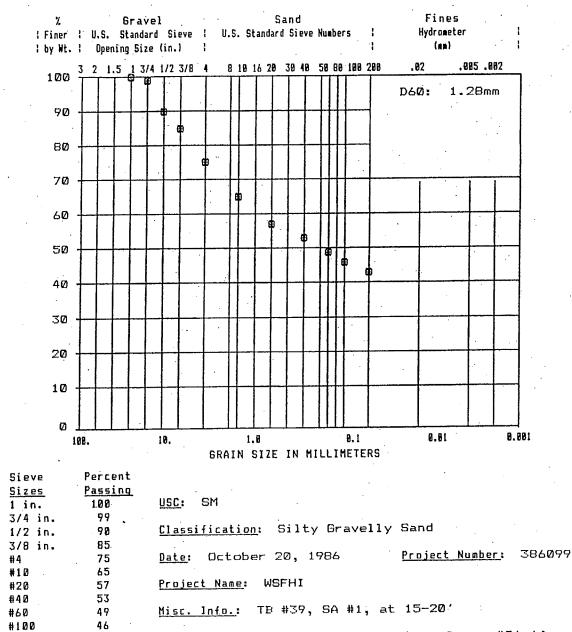

(907) 376-3005

FIGURE III


Sheet 8 of 18

-1.5' TEST BORING NO. 33 (Ground Surface Elevation 224.6) SILT, Brown, Soft, Moist (ML) ñ Sandy GRAVEL, Brown, Dense, Dry (GW) 1.7' Fine to Medium SAND w/ Occasional Trace Silt, Brown to Olive, Moderately Dense, Dry to Slightly Moist (SP) & (SP-SM) 3.5' 14.0 60 16.0' <u>.</u> Static Water Level at 16.3' [208.3] 11/28/86 Sandy GRAVEL w/ Trace Silt, Brown, Dense, Dry to Saturated Below 16.3' (GP-GM) ۵ n Pumped 15 gpm at 20.8 ----21.0' T.D. Sheet 14 of 23 FIGURE 11 Project No: WO86-14 TEST BORING AND MONITOR WELL LOG Gilfilian Engineering, Inc. Scale: 1"= 2' P.O. Box 871868 Wasilla, Alaska 99687 Drawn By: CL WASILLA SEWERAGE FACILITY RESERVE AREA Date Logged: 10/13/36

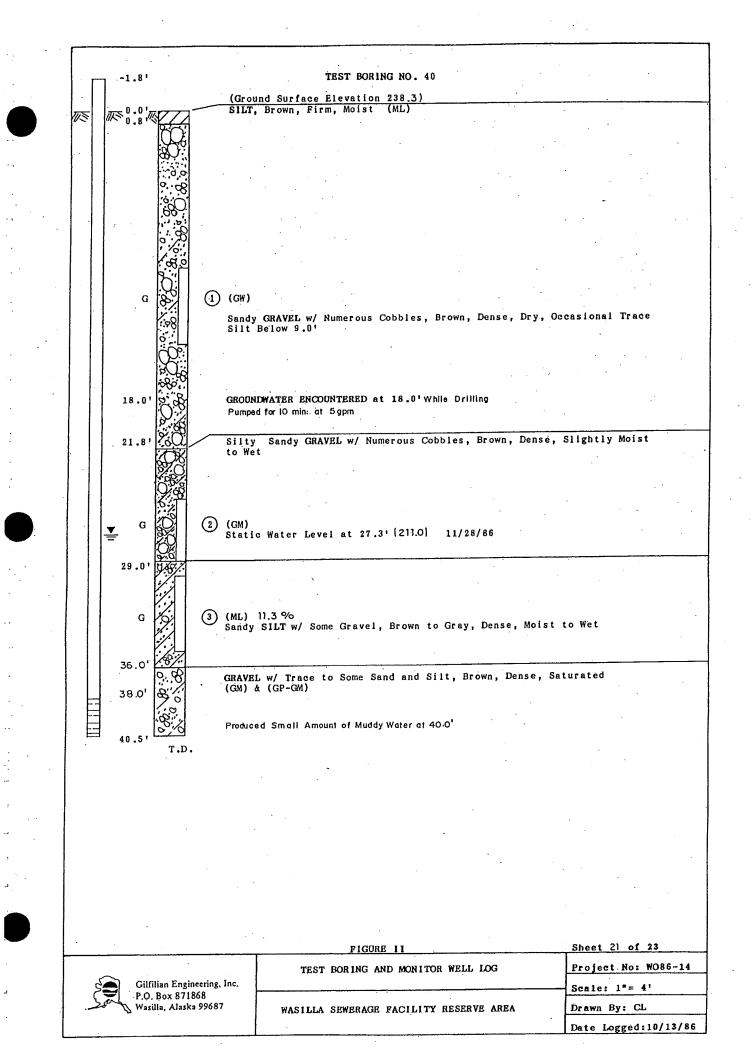
Date Logged:10/14/86

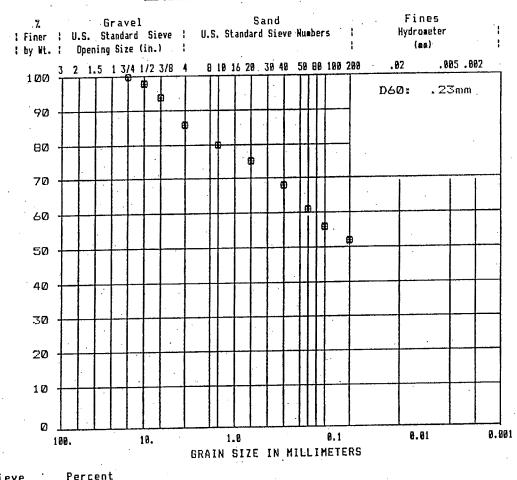
#86-14 Client Name: Gilfilian Engineering, Inc.

Approved by:

FIGURE III

Sheet 13 of 18


#200


43.1

Gilfilian Engineering, Inc.

P.O. Box 871868, Wasilla, Alaska 99687

(907) 376-3005

<u>YSIS</u> SIZE ANAL GRAIN

Sieve	Percent	· · ·
<u>Sizes</u>	Passing	
3/4 in.	100	<u>USC</u> : ML
1/2 in.	98	Classification: Sandy Silt
3/8 in.	94	<u>Classification</u> : Sandy Silt
#4 .	86	Frost Group: F4
#10	80	Frust of oup.
#20 #40	75 68	As Received Moisture Content: 11.3%
	61	
#60 #100	56	Date: October 22, 1986 Project Number: 386099
#200	51.5	
#200	U,I I U	Project Name: WSFHI

Misc. Info.: TB #40, SA #3, at 30-35'

#86-14 Gilfilian Engineering, Inc. <u>Client Name</u>:

Approved by:

FIGURE III

Sheet 14 of 18

Gilfilian Engineering, Inc.

(907) 376-3005 P.O. Box 871868, Wasilla, Alaska 99687

APPENDIX C

INFILTRATION TESTING

Page

C.1	PILOT INFILTRATION TEST	Į
C.2	DOUBLE RING AND FALLING HEAD TESTS	3
C.3	INFILTRATION RESULTS	3

FIGURES

C-1	Grain Size	Classification
-----	------------	----------------

APPENDIX C

Infiltration testing at the site included a pilot infiltration test (PIT), a double ring infiltrometer test, and two falling head tests. The PIT test was conducted in an upland area west of the existing lagoons and east of the wetland/lowlying area where the borings were advanced for this portion of the project. The double ring infiltrometer test was conducted adjacent to Boring B-06, and the falling head tests were conducted adjacent to Boring B-08 and the proposed location for B-12, which was not able to be advanced due to drill rig inaccessibility. The approximate locations of the infiltration tests are shown on the site plan in Figure 2.

C.1 PILOT INFILTRATION TEST

The PIT was conducted at the site by an experienced member of our geotechnical staff on July 29, 2015. The PIT was conducted in general accordance with the small-scale method in the 2012 Ecology Stormwater Management Manual for Western Washington (Ecology 2012). We subcontracted with JTA Construction of Anchorage, Alaska to clear the test areas of trees, excavate the test pit used for the PIT, and coordinate water delivery to the test location. After the completion of the PIT, a bulk sample of the soil from the test pit bottom was collected for grain size analysis, the test pits were backfilled with materials removed during digging, and the native vegetation was placed back on the ground surface to the extent practical. The grainsize curve for the material sampled from the bottom of the test pit is included as Figure C-1.

The PIT procedure generally consisted of creating an excavation with bottom dimensions of approximately 5-foot by 5-foot at a depth of approximately 4 ½ feet bgs, adding water to the excavation, and adjusting the flow to maintain a constant water level (head) in the excavation. Water was supplied to the site with water trucks and pumped to the excavation using 1 ½ -inch diameter flexible hoses. Flow was controlled by adjusting the pump throttle. A measuring rod was placed in the excavation to allow manual measurements of the depth of water. Water was added to the excavation at varying rates of flow until a constant head was maintained for at least one hour under a relatively constant flow (until flow rates stabilized within 5 percent). During the PIT, water was maintained approximately 12 inches above the bottom of the excavation. The flow rate was recorded using an inline flow meter and checked with a 5-gallon bucket and stop watch.

WWTP Geotechnical Data Report.docx

Using the data from our PIT and limited laboratory testing, we calculated short term infiltration rates and hydraulic characteristics for the soil and groundwater conditions observed in our field explorations. The short term infiltration rate is determined by calculating the volume of water infiltrating across the bottom area of the excavation during the PIT. The Ecology Manual considers the rate of water infiltrating after the head and flow rate have stabilized within the excavation to be adequate for calculating the short term infiltration rate. *Volume III - Hydrologic Analysis and Flow Control BMPs, Table 3.3.1* of the Ecology Manual provides correction factors to apply to the short-term infiltration rates to obtain long-term or design infiltration rates. The correction factors include:

- CF_v, site variability and number of locations tested, ranges from 0.33 to 1.0.
- CF_t , test method, ranges from 0.4 to 0.75.
- CF_m, degree of influent control to prevent siltation and bio-buildup, 0.9 (assumes sediment is removed when the facility is infiltrating at 90 percent of its design capacity).

The *total correction factor* (CF_T) is determined by multiplying together the three *partial correction factors* described above.

We recommend the following ranges of correction factors be considered in developing the design infiltration rate for the facility:

- $CF_v = 0.4$ to 0.5 On the low end of the range based the subsurface variability at the site and the number of tests conducted.
- $CF_t = 0.4$ (for grain size, double ring, and falling head test methods) and 0.5 for small-scale PIT methods.
- $CF_m = 0.9$ Assumes a moderate level of influent control will be used to prevent siltation and bio-buildup and that siltation maintenance will be performed once the facility is infiltrating at 90 percent of its design capacity. This should be modified to reflect the anticipated actual maintenance frequency.

Grain size analyses were performed on the sample recovered from about 6 inches to 1 foot below the excavation bottom at the PIT location and represent the typical materials encountered in the unsaturated zone. The grain size results are presented in Figure C-1. Based on the grain size distribution curve we estimated short term infiltration rates of 3.1 inches per hour (in/hr). The infiltration rate from the grain size distribution curve is estimated based on a correlation between the fraction of fines, 10 percent of the passing grain size (D_{10}) , D_{60} , and D_{90} using Equation 1 from Section 3.3.6 of the 2012 Ecology Manual.

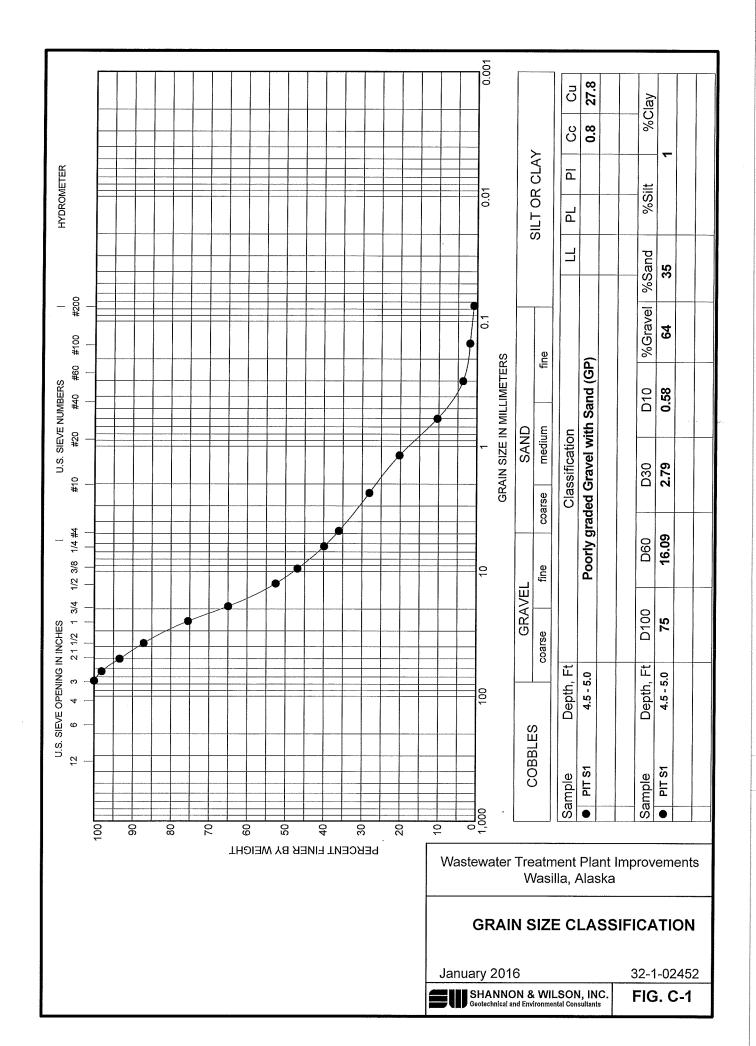
C.2 DOUBLE RING AND FALLING HEAD TESTS

Adjacent to Boring B-08, a double-ring infiltrometer (ASTM D3385) test was attempted. However, due to the fast draining nature of the soil and the inability to keep Mariotte Tubes filled with enough water to sustain a constant head, an improvised test was used. In this test, the two aluminum rings from the double-ring infiltrometer apparatus were seated into the ground approximately 6 inches, the annulus space was then filled with approximately 2 to 4 inches of water above the ground surface. Once the annulus space was filled, the inner-ring was filled with water to 6 inches above the ground surface. Once both rings were filled, the time taken for the inner-ring water level to drop from 6 inches to 2 inches above the ground surface was measured and the percolation rate value was recorded similar to a falling-head test.

At location B-12, due to standing water and other site conditions, a single 24-inch aluminum ring was seated approximately 6 inches into the ground, the ring was then filled to approximately 8 inches above the ground surface with water, and the time taken to drain from 8 inches to 2 inches was recorded.

At location B-06, a double-ring infiltrometer test was successfully performed according to ASTM D3385. For this test, two aluminum rings with 12 and 24 inch diameters were seated approximately six inches into the ground concentrically. The rings were then filled with water and held to a constant depth of approximately 6 inches above the ground surface using Mariotte tubes. The amount of water used to maintain a constant head within the inner aluminum tube was then recorded at 15, 30, and 60 minute intervals until the infiltration rate became constant. Infiltration rates are presented the in the table provided in the next section.

C.3 INFILTRATION RESULTS


The table below summarizes the field infiltration values, infiltration values from grain size results, and our suggested range of correction factors based on the Ecology Manual. We recommend that the engineer who designs the final infiltration structure determines appropriate correction factors for calculating the long term design infiltration rate.

WWTP Geotechnical Data Report.docx

Test Method	Water Level Above the Bottom of Test Pit During the Test (in)	Short Term Infiltration Rate ¹ Constant Head (inches per hour)	Short Term Infiltration Rate ¹ Falling Head (inches per hour)	Suggested Range for Total Correction Factor (CF _T) ²
PIT (small – scale)	11	48	22	0.2 to 0.3
Grain Size (from PIT)	NA	-	3.1	0.1 to 0.2
Boring B-6 (double ring)	6	0.7	-	0.1 to 0.2
Boring B-8 (falling head)	6	-	14.4	0.1 to 0.2
Boring B-12 (falling head)	8	-	7.6	0.1 to 0.2

Notes: ¹ Short Term Infiltration Rate refers to the infiltration rate measured during the test and does not represent the infiltration rate expected for a permanent infiltration structure. For the "grain size" test method, the table values refer to the "preliminary long term" infiltration rates. Infiltration rates for the falling head test period represent an average of multiple infiltration rates calculated over the falling head period. ²Suggested correction factors assume $CF_m = 0.9$ and should be varied depending on the anticipated performance and maintenance schedule. Furthermore, these correction factors do not account for the potential effects of groundwater mounding at the proposed facility.

Shannon & Wilson's water level observations in the piezometers installed as well as review of the previous data indicate that the groundwater table appears to be at approximate elevation 210 feet, and is seen on the surface in several places within the lowlying portion of the project area. The Ecology Manual suggests performing an analytical groundwater mounding analysis when the drainage area exceeds 1 acre and has less than 15 feet to seasonal high water (or other low permeability stratum). The infiltration rates and correction factors discussed in the preceding sections and summarized in the table above do not include allowances for groundwater mounding. We recommend that a detailed mounding analysis be performed using a program such as MODFLOW to refine our understanding of the effects of groundwater mounding within the project area. As a rule of thumb, the effects of groundwater mounding may reduce infiltration rates by at least an order of magnitude from corrected values. We understand that a mounding analysis is planned as a part of this project. Results will be provided under separate cover.

APPENDIX D

ANALYTICAL TEST RESULTS SUMMARY TABLES AND SGS RESULTS FOR GROUNDWATER TESTING

TABLE D-1WELL DEVELOPMENT AND SAMPLING LOG

	Monitoring Well Number					
	MW6	MW8	MW9			
Development Data						
Development Date	6/3/2015	6/3/2015	6/2/2015			
Measured Depth to Water (ft bgs)*	-1.5	-1.0	15.8			
Total Depth of Well (ft bgs)	45.24	40.51	49.20			
Water Column in Well (ft)	46.74	41.51	33.40			
Gallons per Foot	0.16	0.16	0.16			
Water Column Volume (gallons)	7.5	6.64	5.34			
Total Volume Pumped (gallons)	40	49	32.5			
Development Method	Surge block/	Surge block/	Surge block/			
	Submersible pump	Submersible pump	Submersible pump			
Water Level Measurement Data						
Date Water Level Measured	6/3/2015	6/3/2015	6/2/2015			
Time Water Level Measured	12:35	10:05	10:55			
Measured Depth to Water (ft bgs)*	-1.5	-1.0	15.8			
Sampling Data						
Date Sampled	6/3/2015	6/3/2015	6/2/2015			
Time Sampled	14:10	12:00	13:20			
Measured Depth to Water (ft bgs)	-1.5	-1.0	15.8			
Total Depth of Well (ft bgs)	45.24	40.51	49.20			
Water Column in Well (ft)	46.74	41.51	33.40			
Gallons per Foot	0.16	0.16	0.16			
Water Column Volume (gallons)	7.5	6.64	5.34			
Total Volume Pumped (gallons)	40	49	32.5			
Sampling Method	Submersible pump	Submersible pump	Submersible pump			
Diameter of Well Casing	2-inch	2-inch	2-inch			
Water Quality Data						
Date Measured	6/3/2015	6/3/2015	6/2/2015			
Temperature (°C)	5.5	3.42	4.89			
pH (Standard Units)	8.34	8.45	205			
Specific Conductivity (µS/cm)	115	108	6.68			
ORP (mV)	-162.4	-152.6	-22.6			
Turbidity (NTU)	8.48	460.7	107.5			
Remarks						
	Artesian well	Water above ground surface in well				

Notes:

Water quality parameters were measured with a YSI 556 and a Hach turbidimeter

ft = Feet

bgs = below ground surface

°C = Degrees Celsius

 μ S/cm = Microsiemens per Centimeter

NTU = Nephelometric Turbidity Unit

mV = Millivolts

* = Negative depth value indicates water measured above ground surface

TABLE D-2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

				Sample ID Number^ and Water Depth in Feet bgs (See Figure 2 and Appendix A)				
		Drinking Water			Monitoring Wel	l	Observa	tion Well
Parameter Tested	Method*	MCL/SDWR (mg/L)	Cleanup Level (mg/L)**	MW6 -1.5~	MW8 -1.0~	MW9 15.8	B-14 Shallow [#] 89.8	B-14 Deep ^{##} 86.0
pH - SU	SM21 4500	6.5 to 8.5	-	7.90	7.80	7.80	-	-
Total Nitrate/Nitrite - mg/L	SM21 4500	10	-	< 0.0500	< 0.0500	0.937	-	-
Nitrate - mg/L	EPA 300.0	10	-	-	-	-	0.380	0.126
Nitrite - mg/L	EPA 300.0	1	-	-	-	-	0.0600 J	< 0.0500
Dissolved RCRA Metals								
Arsenic - mg/L	SW 6020	0.010	0.010	0.0126	0.00866	0.00375 J	-	-
Barium - mg/L	SW 6020	2.0	2.0	0.0176	0.0159	0.0285	-	-
Cadmium - mg/L	SW 6020	0.005	0.005	< 0.00100	< 0.00100	< 0.00100	-	-
Chromium - mg/L	SW 6020	0.10	0.10	0.00144 J	0.00123 J	0.00638	-	-
Lead - mg/L	SW 6020	0.015	0.015	< 0.000500	< 0.000500	0.00129	-	-
Mercury - mg/L	SW 6020	0.002	0.002	< 0.000100	< 0.000100	< 0.000100	-	-
Selenium - mg/L	SW 6020	0.05	0.05	< 0.0100	< 0.0100	< 0.0100	-	-
Silver - mg/L	SW 6020	-	0.10	< 0.00100	< 0.00100	< 0.00100	-	-

Notes:

= See Appendix D for compounds tested, methods, and laboratory reporting limits = Groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (January 2016) **

Λ = Sample ID number preceded by "02452-" on the chain of custody form

mg/L = Milligrams per liter

< 0.000500 = Analyte not detected; laboratory limit of detection of 0.000500 mg/L

0.0126 = Analyte detected

= Not applicable

= Groundwater is above ground surface in the well casing

J = Estimated concentration less than the limit of quantitation. See the SGS laboratory report for more details.

MCL = Maximum Contaminant Levels

SDWR = Secondary Drinking Water Regulation

SU = Standard units

RCRA = Resource Recovery and Conservation Act

= Below ground surface bgs

= 02452 WWTP.100 in SGS Results Report

= 02452 WWTP.150 in SGS Results Report

Laboratory Report of Analysis

To: Shannon & Wilson, Inc. 5430 Fairbanks St. Suite 3 Anchorage, AK 99518 (907)561-2120

Report Number: 1152555

Client Project: WWTP 02452-001

Dear Katra Wedeking,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Victoria at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Victoria Pennick Project Manager Victoria.Pennick@sgs.com Date

Print Date: 06/09/2015 3:08:50PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Shannon & Wilson, Inc. SGS Project: 1152555 Project Name/Site: WWTP 02452-001 Project Contact: Katra Wedeking

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 06/09/2015 3:08:51PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a trasaction from exercising all their rights adn obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the contect or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

- * The analyte has exceeded allowable regulatory or control limits.
- ! Surrogate out of control limits.
- B Indicates the analyte is found in a blank associated with the sample.
- CCV Continuing Calibration Verification
- CCCV Closing Continuing Calibration Verification
- CL Control Limit
- D The analyte concentration is the result of a dilution.
- DF Dilution Factor
- DL Detection Limit (i.e., maximum method detection limit)
- E The analyte result is above the calibrated range.
- F Indicates value that is greater than or equal to the DL
- GT Greater Than
- IB Instrument Blank
- ICV Initial Calibration Verification
- J The quantitation is an estimation.
- JL The analyte was positively identified, but the quantitation is a low estimation.
- LCS(D) Laboratory Control Spike (Duplicate)
- LOD Limit of Detection (i.e., 1/2 of the LOQ)
- LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)
- LT Less Than
- M A matrix effect was present.
- MB Method Blank
- MS(D) Matrix Spike (Duplicate)
- ND Indicates the analyte is not detected.
- Q QC parameter out of acceptance range.
- R Rejected
- RPD Relative Percent Difference
- U Indicates the analyte was analyzed for but not detected.
- Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 06/09/2015 3:08:52PM

SM21 4500-H B

Sample Summary							
<u>Client Sample ID</u> 02452-MW9 02452-MW8 02452-MW6	<u>Lab Sample ID</u> 1152555001 1152555002 1152555003	Collected 06/02/2015 06/03/2015 06/03/2015	<u>Received</u> 06/03/2015 06/03/2015 06/03/2015	<u>Matrix</u> Water (Surface, Eff., Ground) Water (Surface, Eff., Ground) Water (Surface, Eff., Ground)			
MethodMethod DescriptionSW6020ADissolved RCRA Metals by ICP-MSSM21 4500NO3-FNitrate/Nitrite Flow injection Pres.							

pH Analysis

Print Date: 06/09/2015 3:08:54PM

Detectable Results Summary

Client Sample ID: 02452-MW9			
Lab Sample ID: 1152555001	Parameter	Result	<u>Units</u>
Dissolved Metals by ICP/MS	Arsenic	3.75J	ug/L
	Barium	28.5	ug/L
	Chromium	6.38	ug/L
	Lead	1.29	ug/L
Waters Department	pH	7.80	pH units
	Total Nitrate/Nitrite-N	0.937	mg/L
Client Sample ID: 02452-MW8			
Lab Sample ID: 1152555002	<u>Parameter</u>	Result	<u>Units</u>
Dissolved Metals by ICP/MS	Arsenic	8.66	ug/L
	Barium	15.9	ug/L
	Chromium	1.23J	ug/L
Waters Department	рН	7.80	pH units
Client Sample ID: 02452-MW6			
Lab Sample ID: 1152555003	<u>Parameter</u>	Result	<u>Units</u>
Dissolved Metals by ICP/MS	Arsenic	12.6	ug/L
-	Barium	17.6	ug/L
	Chromium	1.44J	ug/L
Waters Department	рН	7.90	pH units

Print Date: 06/09/2015 3:08:55PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 02452-MW9

Client Sample ID: **02452-MW9** Client Project ID: **WWTP 02452-001** Lab Sample ID: 1152555001 Lab Project ID: 1152555 Collection Date: 06/02/15 13:20 Received Date: 06/03/15 16:08 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Arsenic	3.75 J	5.00	1.50	ug/L	5		06/08/15 14:32
Barium	28.5	3.00	0.940	ug/L	5		06/08/15 14:32
Cadmium	1.00 U	2.00	0.620	ug/L	5		06/08/15 14:32
Chromium	6.38	4.00	1.20	ug/L	5		06/08/15 14:32
Lead	1.29	1.00	0.310	ug/L	5		06/08/15 14:32
Mercury	0.100 U	0.200	0.0620	ug/L	5		06/08/15 14:32
Selenium	10.0 U	20.0	6.20	ug/L	5		06/08/15 14:32
Silver	1.00 U	2.00	0.620	ug/L	5		06/08/15 14:32

Batch Information

Analytical Batch: MMS8948 Analytical Method: SW6020A Analyst: EAB Analytical Date/Time: 06/08/15 14:32 Container ID: 1152555001-A Prep Batch: MXX28720 Prep Method: SW3010A Prep Date/Time: 06/03/15 18:45 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 06/09/2015 3:08:55PM

J flagging is activated

SGS	

Results of 02452-MW9 Client Sample ID: 02452-MW9 Client Project ID: WWTP 02452-001 Lab Sample ID: 1152555001 Lab Project ID: 1152555		R M Se	eceived Dat	te: 06/02/1 te: 06/03/15 r (Surface,	5 16:08		
Results by Waters Department							
<u>Parameter</u> pH	<u>Result</u> Qual 7.80	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.100	<u>Units</u> pH units	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyzed</u> 06/05/15 17:09
Batch Information							
Analytical Batch: WTI4224 Analytical Method: SM21 4500-H B Analyst: KCT Analytical Date/Time: 06/05/15 17:09 Container ID: 1152555001-C							
Parameter Total Nitrate/Nitrite-N	<u>Result Qual</u> 0.937	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 5	<u>Allowable</u> <u>Limits</u>	Date Analyzed 06/08/15 13:17
Analytical Batch: WFI2402 Analytical Method: SM21 4500NO3-F Analyst: SLC Analytical Date/Time: 06/08/15 13:17 Container ID: 1152555001-B							

Print Date: 06/09/2015 3:08:55PM

J flagging is activated

Results of 02452-MW8

Client Sample ID: **02452-MW8** Client Project ID: **WWTP 02452-001** Lab Sample ID: 1152555002 Lab Project ID: 1152555 Collection Date: 06/03/15 12:00 Received Date: 06/03/15 16:08 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	8.66	5.00	1.50	ug/L	5		06/08/15 14:35
Barium	15.9	3.00	0.940	ug/L	5		06/08/15 14:35
Cadmium	1.00 U	2.00	0.620	ug/L	5		06/08/15 14:35
Chromium	1.23 J	4.00	1.20	ug/L	5		06/08/15 14:35
Lead	0.500 U	1.00	0.310	ug/L	5		06/08/15 14:35
Mercury	0.100 U	0.200	0.0620	ug/L	5		06/08/15 14:35
Selenium	10.0 U	20.0	6.20	ug/L	5		06/08/15 14:35
Silver	1.00 U	2.00	0.620	ug/L	5		06/08/15 14:35

Batch Information

Analytical Batch: MMS8948 Analytical Method: SW6020A Analyst: EAB Analytical Date/Time: 06/08/15 14:35 Container ID: 1152555002-A Prep Batch: MXX28720 Prep Method: SW3010A Prep Date/Time: 06/03/15 18:45 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 06/09/2015 3:08:55PM

J flagging is activated

SGS	

lient Project ID: WWTP 02452-001 ab Sample ID: 1152555002 ab Project ID: 1152555		M S		te: 06/03/15 r (Surface, I			
esults by Waters Department							
arameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1	7.80	0.100	0.100	pH units	1		06/05/15 17:14
atch Information							
Analytical Batch: WTI4224 Analytical Method: SM21 4500-H B Analyst: KCT Analytical Date/Time: 06/05/15 17:14 Container ID: 1152555002-C							
arameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed
otal Nitrate/Nitrite-N	0.0500 U	0.100	0.0310	mg/L	5		06/08/15 13:26
Analytical Batch: WFI2402 Analytical Method: SM21 4500NO3-F Analyst: SLC Analytical Date/Time: 06/08/15 13:26 Container ID: 1152555002-B							

Print Date: 06/09/2015 3:08:55PM

J flagging is activated

Results of 02452-MW6

Client Sample ID: **02452-MW6** Client Project ID: **WWTP 02452-001** Lab Sample ID: 1152555003 Lab Project ID: 1152555 Collection Date: 06/03/15 14:10 Received Date: 06/03/15 16:08 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						Allowable	
Parameter_	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	12.6	5.00	1.50	ug/L	5		06/08/15 14:37
Barium	17.6	3.00	0.940	ug/L	5		06/08/15 14:37
Cadmium	1.00 U	2.00	0.620	ug/L	5		06/08/15 14:37
Chromium	1.44 J	4.00	1.20	ug/L	5		06/08/15 14:37
Lead	0.500 U	1.00	0.310	ug/L	5		06/08/15 14:37
Mercury	0.100 U	0.200	0.0620	ug/L	5		06/08/15 14:37
Selenium	10.0 U	20.0	6.20	ug/L	5		06/08/15 14:37
Silver	1.00 U	2.00	0.620	ug/L	5		06/08/15 14:37

Batch Information

Analytical Batch: MMS8948 Analytical Method: SW6020A Analyst: EAB Analytical Date/Time: 06/08/15 14:37 Container ID: 1152555003-A Prep Batch: MXX28720 Prep Method: SW3010A Prep Date/Time: 06/03/15 18:45 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 06/09/2015 3:08:55PM

J flagging is activated

SGS	

pH 7.90 0.100 0.100 pH units 1 06/05 Batch Information Analytical Batch: WTI4224 Analytical Method: SM21 4500-H B 4 <t< th=""><th></th></t<>	
Client Project ID: WWTP 02452-001 Lab Sample ID: 1152555003 Lab Project ID: 1152555 Results by Waters Department Parameter Result Qual LOQ/CL DL Units DE Limits Date / pH 7.90 0.100 0.100 pH units 1 06/05 Batch Information Analytical Batch: WTI4224 Analytical Method: SM21 4500-H B Analyst: KT Analytical Date/Time: 06/05/15 17:20 Container ID: 1152555003-C Parameter Result Qual LOQ/CL DL Units DE Limits Date / 0.0500 U 0.100 0.0310 mg/L 5 06/08/08 Batch Information Analytical Batch: WFI2402 Analytical Date/Time: 06/08/15 13:28	
Parameter Result Qual LOQ/CL DL Units DE Allowable Date // pH 7.90 0.100 0.100 0.100 pH units 1 06/05 Batch Information Analytical Batch: WTI4224 Analytical Method: SM21 4500-H B Analytical Date/Time: 06/05/15 17:20 Container ID: 1152555003-C Allowable Limits DE Allowable Limits Date // Parameter Result Qual LOQ/CL DL Units DE Allowable Limits Date // Total Nitrate/Nitrite-N 0.0500 U 0.100 0.0310 mg/L 5 06/08 Batch Information Analytical Batch: WFI2402 Analytical Method: SM21 4500NO3-F Analytical Method: SM21 4500NO3-F Analytical Date/Time: 06/08/15 13:28	
Parameter Result Qual LOQ/CL DL Units DE Limits Date // pH 7.90 0.100 0.100 pH units 1 06/05 Batch Information Analytical Batch: WTI4224 Analytical Method: SM21 4500-H B Analytical Date/Time: 06/05/15 17:20 Container ID: 1152555003-C Parameter Result Qual LOQ/CL DL Units DE Limits Date // Parameter Result Qual LOQ/CL DL Units DE Limits Date // Total Nitrate/Nitrite-N 0.0500 U 0.100 0.0310 mg/L 5 06/08 Batch Information Analytical Batch: WFI2402 Analytical Method: SM21 4500NO3-F Analytical Method: SM21 4500NO3-F Analytical Date/Time: 06/08/15 13:28	
Analytical Batch: WTI4224 Analytical Method: SM21 4500-H B Analyst: KCT Analytical Date/Time: 06/05/15 17:20 Container ID: 1152555003-C Parameter Result Qual LOQ/CL DL Units DF Limits Date / Total Nitrate/Nitrite-N 0.0500 U 0.100 0.0310 mg/L 5 06/08 Batch Information Analytical Batch: WFI2402 Analytical Method: SM21 4500NO3-F Analytical Method: SM21 4500NO3-F Analytical Date/Time: 06/08/15 13:28	<u>Analyzed</u> 5/15 17:20
Analytical Batch: WTI4224 Analytical Method: SM21 4500-H B Analyst: KCT Analytical Date/Time: 06/05/15 17:20 Container ID: 1152555003-C Parameter Result Qual LOQ/CL DL Units DF Limits Date / Total Nitrate/Nitrite-N 0.0500 U 0.100 0.0310 mg/L 5 06/08 Batch Information Analytical Batch: WFI2402 Analytical Method: SM21 4500NO3-F Analytical Method: SM21 4500NO3-F Analytical Date/Time: 06/08/15 13:28	
Parameter Result Qual LOQ/CL DL Units DF Limits Date // Total Nitrate/Nitrite-N 0.0500 U 0.100 0.0310 mg/L 5 06/08 Batch Information Analytical Batch: WFI2402 Analytical Method: SM21 4500NO3-F Analyst: SLC Analytical Date/Time: 06/08/15 13:28	
Total Nitrate/Nitrite-N 0.0500 U 0.100 0.0310 mg/L 5 06/08. Batch Information Analytical Batch: WFI2402 Analytical Method: SM21 4500NO3-F Analytical Date/Time: 06/08/15 13:28	
Batch Information Analytical Batch: WFI2402 Analytical Method: SM21 4500NO3-F Analyst: SLC Analytical Date/Time: 06/08/15 13:28	<u>Analyzed</u> 3/15 13:28
Container ID: 1152555003-B	

J flagging is activated

SGS

Method Blank

Blank ID: MB for HBN 1710176 [MXX/28720] Blank Lab ID: 1268507 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1152555001, 1152555003

Results by SW6020A

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	2.50U	5.00	1.50	ug/L
Barium	2.32J	3.00	0.940	ug/L
Cadmium	1.00U	2.00	0.620	ug/L
Chromium	2.00U	4.00	1.20	ug/L
Lead	0.500U	1.00	0.310	ug/L
Mercury	0.100U	0.200	0.0620	ug/L
Selenium	10.0U	20.0	6.20	ug/L
Silver	1.00U	2.00	0.620	ug/L

Batch Information

Analytical Batch: MMS8946 Analytical Method: SW6020A Instrument: Perkin Elmer Sciex ICP-MS P3 Analyst: ACF Analytical Date/Time: 6/7/2015 3:01:24PM Prep Batch: MXX28720 Prep Method: SW3010A Prep Date/Time: 6/3/2015 6:45:09PM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 06/09/2015 3:08:57PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1152555 [MXX28720] Blank Spike Lab ID: 1268508 Date Analyzed: 06/07/2015 15:04

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1152555001, 1152555002, 1152555003

Results by SW6020A

		Blank Spike	(~9. =)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
rsenic	1000	1030	103	(80-120)
Barium	1000	1030	103	(80-120)
Cadmium	100	105	105	(80-120)
Chromium	400	409	102	(80-120)
ead	1000	1110	111	(80-120)
Mercury	10	10.5	105	(80-120)
Selenium	1000	1040	104	(80-120)
Silver	100	105	105	(80-120)

Batch Information

Analytical Batch: MMS8946 Analytical Method: SW6020A Instrument: Perkin Elmer Sciex ICP-MS P3 Analyst: ACF Prep Batch: MXX28720 Prep Method: SW3010A Prep Date/Time: 06/03/2015 18:45 Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 06/09/2015 3:08:59PM

Matrix Spike Summary

Original Sample ID: 1268511 MS Sample ID: 1268512 MS MSD Sample ID: 1268513 MSD Analysis Date: 06/07/2015 15:07 Analysis Date: 06/07/2015 15:09 Analysis Date: 06/07/2015 15:11 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1152555001, 1152555002, 1152555003

Results by SW6020A

		Ма	trix Spike ((ug/L)	Spike	e Duplicate	e (ug/L)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	2.58J	1000	1030	103	1000	1040	103	80-120	0.83	(< 15)
Barium	31.2	1000	1090	106	1000	1050	102	80-120	3.30	(< 15)
Cadmium	1.00U	100	108	108	100	105	105	80-120	2.75	(< 15)
Chromium	2.00U	400	404	101	400	403	101	80-120	0.35	(< 15)
Lead	0.500U	1000	1140	114	1000	1090	109	80-120	4.29	(< 15)
Mercury	0.100U	10.0	10.2	102	10.0	10.2	102	80-120	0.30	(< 15)
Selenium	10.0U	1000	1030	103	1000	1050	105	80-120	1.30	(< 15)
Silver	1.00U	100	107	107	100	104	104	80-120	3.04	(< 15)

Batch Information

Analytical Batch: MMS8946 Analytical Method: SW6020A Instrument: Perkin Elmer Sciex ICP-MS P3 Analyst: ACF Analytical Date/Time: 6/7/2015 3:09:28PM

Prep Batch: MXX28720 Prep Method: 3010 H20 Digest for Metals ICP-MS Prep Date/Time: 6/3/2015 6:45:09PM Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 06/09/2015 3:09:00PM

SGS

		6			
Method Blank Blank ID: MB for HBN 17 Blank Lab ID: 1269495 QC for Samples: 1152555001, 1152555002,		Matrix	:: Water (Surfa	ce, Eff., Ground)	
Results by SM21 4500NC)3-F	·			
<u>Parameter</u> Total Nitrate/Nitrite-N	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	
Batch Information Analytical Batch: WFI24 Analytical Method: SM2 Instrument: Astoria segu Analyst: SLC Analytical Date/Time: 6/	1 4500NO3-F nented flow				

Print Date: 06/09/2015 3:09:01PM

Blank Spike Summary				
Blank Spike ID: LCS for H Blank Spike Lab ID: 12694 Date Analyzed: 06/08/20 DC for Samples: 11525	169		555003	Matrix: Water (Surface, Eff., Ground)
Results by SM21 4500NO	3-F			
		ank Spike	(mg/L)	
Parameter		<u>Result</u>	Rec (%)	<u>CL</u>
otal Nitrate/Nitrite-N	0.4	0.412	103	(90-110)
Batch Information				
Analytical Batch: WFI2402 Analytical Method: SM21 4 Instrument: Astoria segme Analyst: SLC				Prep Batch: Prep Method: Prep Date/Time: Spike Init Wt./Vol.: 0.4 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: Extract Vol:

SGS North America Inc.

-

Original Sample ID: 115 MS Sample ID: 126946 MSD Sample ID: 12694	2 MS				Analysis Analysis	Date: 0	6/08/2015 6/08/2015 6/08/2015 Water	12:40		
QC for Samples: 11525	55001									
Results by SM21 4500N	03-F				0.11		(
Parameter	Sample		trix Spike (mg/L) Rec (%)		e Duplicate	e (mg/L) Rec (%)	CI	<u>RPD (%)</u>	
Total Nitrate/Nitrite-N	<u>3.32</u>	<u>Spike</u> 5.00	<u>Result</u> 7.88	91	<u>Spike</u> 5.00	<u>Result</u> 8.30	100	<u>CL</u> 90-110	5.10	(< 25)
Batch Information										
Analytical Batch: WFI24 Analytical Method: SM2					Batch: Method:					
Instrument: Astoria segi					Date/Tin	ne:				
Analyst: SLC				Prep	Initial Wt	./Vol.: 5.0				
Analytical Date/Time: 6/	/8/2015 12:40:21	PM		Prep	Extract	/ol: 5.00m	۱L			

Print Date: 06/09/2015 3:09:04PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix Spike Summary

Original Sample ID: 1152555001 MS Sample ID: 1269464 MS MSD Sample ID: 1269465 MSD Analysis Date: 06/08/2015 13:17 Analysis Date: 06/08/2015 13:19 Analysis Date: 06/08/2015 13:20 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1152555001, 1152555002, 1152555003

		Ma	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Total Nitrate/Nitrite-N	0.937	5.00	5.7	95	5.00	5.67	95	90-110	0.65	(< 25)
Batch Information	02			Dror	Batch:					

Print Date: 06/09/2015 3:09:04PM

Matrix Spike Summary

Original Sample ID: 1152601001 MS Sample ID: 1269466 MS MSD Sample ID: 1269467 MSD Analysis Date: 06/08/2015 13:56 Analysis Date: 06/08/2015 13:58 Analysis Date: 06/08/2015 13:59 Matrix: Drinking Water

QC for Samples: 1152555002, 1152555003

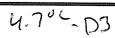
		Ma	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD C
Total Nitrate/Nitrite-N	1.93	5.00	6.47	91	5.00	6.58	93	90-110	1.70	(< 25)
Analytical Batch: WFI240	2 4500NO3-F ented flow			Prep	 Batch: Method: Date/Tin 					

Print Date: 06/09/2015 3:09:04PM

SGS

	nary	_			
riginal Sample ID: 115 uplicate Sample ID: 12			Analysis Date: 0 Matrix: Water (S		nd)
C for Samples:					
152555001, 115255500	02, 1152555003				
esults by SM21 4500-H	В				
AME_	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
4	7.30	7.30	pH units	0.00	(< 5)
atch Information Analytical Batch: WTI422 Analytical Method: SM21 Instrument: Titration Analyst: KCT					

SGS


97002 965 1152555003 <u>Original</u> 7.50	Duplicate 7.50	Analysis Date: 0 Matrix: Water (S <u>Units</u> pH units		
7.50				
7.50				
	7.50	pH units	0.00	(< 5)
00-Н В				

ank Spike Summary				
ank Spike ID: LCS for HE ank Spike Lab ID: 12689		[WTI4224]		
ate Analyzed: 06/05/201				
for Samples: 115255	55001, 11525	55002 1152	2555003	Matrix: Water (Surface, Eff., Ground)
esults by SM21 4500-H B				
rameter_	B <u>Spike</u>	lank Spike (<u>Result</u>	(pH units) <u>Rec (%)</u>	CL
	7	6.97	100	(99-101)
tch Information				
Analytical Batch: WTI4224 Analytical Method: SM21 45 Instrument: Titration Analyst: KCT	500-H B			Prep Batch: Prep Method: Prep Date/Time: Spike Init Wt./Vol.: 7 pH units Extract Vol: 1 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 06/09/2015 3:09:07PM

-

	1152555 	
Geotechnical and Environmental Consultants CHAIN	I-OF-CUSTODY RECORD Laboratory_565	Pageof
400 N. 34th Street, Suite 100 2043 Westport Center Drive 2705 Saint Andrews Loc Seattle, WA 98103 St. Louis, MO 63146-3564 Pasco, WA 99301-3378 (206) 632-8020 (314) 699-9660 (509) 946-6309	oop, Suite A Attn: Tare ⁷⁸ Analysis Parameters/Sample Container Description	
2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 3990 Collins Way, Suite 100 Lake Oswego, OR 97035 (503) 223-6147 Sample Identity Lab No. 5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907) 561-2120 1321 Bannock Street, Suite 200 Denver, CO 80204 (303) 825-3800 Date Sample Identity		7
Sample Identity Lab No. Time Sample $02452 - Mwg$ (i) $-1320 6/2/15$	15 X X X X 3 Grav	emarks/Matrix
MWB (2K- 1200 6/3/15		adwater 1
NW6 OAC 1410 6/3/13	15 Y X X X 3	V
Project Information Sample Receipt	Relinquished By: 1. Relinquished By: 2. Relinquished By: Signature: Time: Signature: Time: Signature: Signature:	ished By: 3.
Project Number: 02452-001 Total Number of Containers Project Name: WWTP COC Seals/Intact? Y/N/NA	2 The	nme:
Contact: Kyw Received Good Cond./Cold	Printed Name: Date: Printed Name: Date: Printed Name:	Date:
Ongoing Project? Yes X No Delivery Method: Sampler: Image: Terf frace (attach shipping bill, if any)	Company: Company: Company:	
Instructions	Received By: 1. Received By: 2. Receive	d By: 3.
Requested Turnaround Time: Standard	Signature: Time: Signature: Time: Signature:	Time:
Special Instructions:	Printed Name: Date: Printed Name: Date: Printed Name:	Date:
Distribution: White - w/shipment - returned to Shannon & Wilson/w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - Job File	Company: Company: Company:	

No.________30'553

1152555

SAMPLE RECEIPT FORM

Review Criteria:	Yes	N/A	No	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable.		\checkmark		Exemption permitted if sampler hand carries/delivers.
COC accompanied samples?			┶┷┥	
Temperature blank compliant* (i.e., 0-6°C after CF)?		Ц	Ц	Exemption permitted if chilled & collected <8 hrs ago.
If >6 °C, were samples collected <8 hours ago?	IЦ		Ц	
If <0 °C, were all sample containers ice free?		\checkmark		
Cooler ID: 1 @ 4.7 w/ Therm.ID: D3 Cooler ID: @				
Cooler ID: @ w/ Therm.ID:				
Cooler ID: (a) W/ Therm.ID:				
Cooler ID: @ w/ Therm.ID:				
Cooler ID: @w/ Therm.ID: If samples are received <u>without</u> a temperature blank, the "cooler				
temperature" will be documented in lieu of the temperature blank &				
"COOLER TEMP" will be noted to the right. In cases where neither a				Note: Identify containers received at non-compliant
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."				temperature. Use form FS-0029 if more space is needed.
Delivery method (specify all that apply): Client (hand carried)				
USPS Lynden AK Air Alert Courier				
UPS GredEx RAVN C&D Delivery				
Carlile Pen Air Warp Speed Other:				
\rightarrow For WO# with airbills, was the WO# & airbill				
info recorded in the Front Counter eLog?		\checkmark		
		/ .		
	Yes	N/A	No	1
Were samples received within hold time?				Note: Refer to form F-083 "Sample Guide" for hold times.
Do samples match COC * (i.e., sample IDs, dates/times collected)?	$\mathbf{\nabla}$	Ц	Ц	<i>Note: If times differ <1hr, record details and login per COC.</i>
Were analyses requested unambiguous?				
Were samples in good condition (no leaks/cracks/breakage)?				
Packing material used (specify all that apply): Bubble Wrap				
Separate plastic bags Vermiculite Other:				
Were proper containers (type/mass/volume/preservative*) used?	Щ		Н	<i>Exemption permitted for metals (e.g., 200.8/6020A).</i>
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?			Н	
Were all VOA vials free of headspace (i.e., bubbles ≤ 6 mm)?			H	
Were all soil VOAs field extracted with MeOH+BFB?		\checkmark		
For preserved waters (other than VOA vials, LL-Mercury or				
microbiological analyses), was pH verified and compliant ? If pH was adjusted, were bottles flagged (i.e., stickers)?		H	H	
For special handling (e.g., "MI" soils, foreign soils, lab filter for		V		
dissolved, lab extract for volatiles, Ref Lab, limited volume),				
were bottles/paperwork flagged (e.g., sticker)?		\checkmark		
For RUSH/SHORT Hold Time , were COC/Bottles flagged				
accordingly? Was Rush/Short HT email sent, if applicable?		\checkmark		
For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were				
containers / paperwork flagged accordingly?		\checkmark		
For any question answered "No," has the PM been notified and				SRF Completed by: EDJ
the problem resolved (or paperwork put in their bin)?		\checkmark		PM notified:
Was PEER REVIEW of <i>sample numbering/labeling completed?</i>	一	$\overline{\mathbf{V}}$	$\overline{\neg}$	Peer Reviewed by:
Additional notes (if applicable):				
Additional notes (11 applicable).				

Note to Client: Any "no" answer above indicates non-compliance with standard procedures and may impact data quality.

F102_eSRF_2015_03_31

Sample Containers and Preservatives

Container Id	Preservative	Container Condition	Container Id	Preservative	Container Condition
1152555001-A	HNO3 to $pH < 2$	OK			
1152555001-В	H2SO4 to $pH < 2$	OK			
1152555001-С	No Preservative Required	OK			
1152555002-A	HNO3 to $pH < 2$	OK			
1152555002-В	H2SO4 to $pH < 2$	OK			
1152555002-С	No Preservative Required	OK			
1152555003-A	HNO3 to $pH < 2$	OK			
1152555003-В	H2SO4 to $pH < 2$	OK			
1152555003-С	No Preservative Required	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added. PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

BU - The container was received with headspace greater than 6mm.

Laboratory Report of Analysis

To: Shannon & Wilson, Inc. 5430 Fairbanks St. Suite 3 Anchorage, AK 99518 (907)561-2120

Report Number: **1161040**

Client Project: 32-1-02452 WWTP

Dear Katra Wedeking,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Victoria at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Victoria Pennick Project Manager Victoria.Pennick@sgs.com Date

Print Date: 03/10/2016 2:44:13PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Shannon & Wilson, Inc. SGS Project: 1161040 Project Name/Site: 32-1-02452 WWTP Project Contact: Katra Wedeking

Refer to sample receipt form for information on sample condition.

1160980002(1315338MS) (1315339) MS

300.0 - Anions - MS recovery for several analytes is outside QC criteria. Refer to LCS for accuracy requirements.

1160980002(1315338MSD) (1315340) MSD

300.0 - Anions - MSD recovery for several analytes is outside QC criteria. Refer to LCS for accuracy requirements.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 03/10/2016 2:44:14PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 03/10/2016 2:44:17PM

Note:

Collected

03/07/2016

03/07/2016

Client Sample ID 02452 WWTP.100 02452 WWTP.150 Lab Sample ID 1161040001 1161040002 <u>Received</u> 03/08/2016 03/08/2016 <u>Matrix</u> Water (Surface, Eff., Ground) Water (Surface, Eff., Ground)

<u>Method</u> EPA 300.0 Method Description

Ion Chromatographic Analysis

Print Date: 03/10/2016 2:44:18PM

	Detectable Results Summary					
Client Sample ID: 02452 WWTP.100 Lab Sample ID: 1161040001 Waters Department	<u>Parameter</u> Nitrate-N	<u>Result</u> 0.380	<u>Units</u> mg/L			
	Nitrite-N	0.0600J	mg/L			
Client Sample ID: 02452 WWTP.150 Lab Sample ID: 1161040002	Parameter_	<u>Result</u>	<u>Units</u>			
Waters Department	Nitrate-N	0.126	mg/L			

Print Date: 03/10/2016 2:44:19PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 02452 WWTP.100 Client Project ID: 32-1-02452 WWTP Lab Sample ID: 1161040001 Lab Project ID: 1161040	C R M S Lo						
Results by Waters Department Parameter Nitrate-N	<u>Result Qual</u> 0.380	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 03/08/16 14:30
Nitrite-N Batch Information	0.0600 J	0.100	0.0310	mg/L	1		03/08/16 14:30
Analytical Batch: WIC5521 Analytical Method: EPA 300.0 Analyst: KCT Analytical Date/Time: 03/08/16 14:30 Container ID: 1161040001-A		F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	METHOD me: 03/08/ t./Vol.: 10	16 11:38 mL		

Print Date: 03/10/2016 2:44:21PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: 02452 WWTP.150 Client Project ID: 32-1-02452 WWTP Lab Sample ID: 1161040002 Lab Project ID: 1161040	C R M S L						
Results by Waters Department			_				
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Nitrate-N Nitrite-N	0.126 0.0500 U	0.100 0.100	0.0310 0.0310	mg/L mg/L	1 1		03/08/16 14:52 03/08/16 14:52
Batch Information							
Analytical Batch: WIC5521 Analytical Method: EPA 300.0			Prep Batch: Prep Method:				
Analyst: KCT Analytical Date/Time: 03/08/16 14:52			Prep Date/Tir Prep Initial W				
Container ID: 1161040002-A		F	Prep Extract	Vol: 10 mL			

Print Date: 03/10/2016 2:44:21PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

lank ID: MB for HBN 173 lank Lab ID: 1315289	30133 [WXX/11437]	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1161040001, 1161040002							
esults by EPA 300.0							
arameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>			
itrate-N itrite-N	0.0500U 0.0500U	0.100 0.100	0.0310 0.0310	mg/L mg/L			
otal Nitrate/Nitrite-N	0.0500U	0.100	0.0310	mg/L			
tch Information Analytical Batch: WIC55 Analytical Method: EPA Instrument: Metrohm 73: Analyst: KCT Analytical Date/Time: 3/8	300.0 3 DX2	Prep Me Prep Da Prep Ini	atch: WXX11437 ethod: METHOD ate/Time: 3/8/201 tial Wt./Vol.: 10 r tract Vol: 10 mL				

Print Date: 03/10/2016 2:44:22PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1161040 [WXX11437] Blank Spike Lab ID: 1315290 Date Analyzed: 03/08/2016 14:08

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1161040001, 1161040002

Results by EPA 300.0

-				
	I	Blank Spike) (mg/L)	
Parameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
Nitrate-N	10	10.6	106	(90-110)
Nitrite-N	10	10.5	105	(90-110)
Total Nitrate/Nitrite-N	20	21.1	105	(90-110)

Analytical Batch: WIC5521Prep Batch: WXX11437Analytical Method: EPA 300.0Prep Method: METHODInstrument: Metrohm 733 DX2Prep Date/Time: 03/08/2016 11:38Analyst: KCTSpike Init Wt./Vol.: 10 mg/LExtract Vol:Dupe Init Wt./Vol.: Extract Vol:

Print Date: 03/10/2016 2:44:24PM

Matrix Spike Summary

Original Sample ID: 1315338 MS Sample ID: 1315339 MS MSD Sample ID: 1315340 MSD

QC for Samples: 1161040001, 1161040002

Analysis Date: 03/08/2016 15:37 Analysis Date: 03/08/2016 15:59 Analysis Date: 03/08/2016 16:21 Matrix: Water (Surface, Eff., Ground)

Results by EPA 300.0			_							
		Ma	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u>	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Nitrate-N	0.0500U	10.0	11.2	112 *	10.0	11.2	112 *	90-110	0.05	(< 15)
Nitrite-N	0.0500U	10.0	11.1	111 *	10.0	11.1	111 *	90-110	0.05	(< 15)
Total Nitrate/Nitrite-N	0.0500U	20.0	22.2	111 *	20.0	22.2	111 *	90-110	0.00	(< 15)

Batch Information

Analytical Batch: WIC5521 Analytical Method: EPA 300.0 Instrument: Metrohm 733 DX2 Analyst: KCT Analytical Date/Time: 3/8/2016 3:59:42PM Prep Batch: WXX11437 Prep Method: EPA 300.0 Extraction Waters/Liquids Prep Date/Time: 3/8/2016 11:38:00AM Prep Initial Wt./Vol.: 10.00mL Prep Extract Vol: 10.00mL

Print Date: 03/10/2016 2:44:26PM

	N&WI Id Environ	ILSON, INC. mental Consultants	Cł	HAIN-	OF	-Cl	UST	ODY	RE	CORD)	Labo Attn:	ratory	SGS P Tri Penn	ageof
400 N. 34th Street, Suite 100 Seattle, WA 98103 (206) 632-8020		estport Center Drive 5, MO 63146-3564 9-9660		Andrews Loop, 99301-3378 309	, Suite A	1			Analys	is Parameters		Container I		1,000	
2355 Hill Road Fairbanks, AK 99709 (907) 479-0600	5430 Fai	irbanks Street, Suite 3 ge, AK 99518	()				\square				preservativ	re if used)	7		7
3990 Collins Way, Suite 100 Lake Oswego, OR 97035 (503) 223-6147		nnock Street, Suite 200 CO 80204 5-3800		Date	,		So Star	54 A	C O	ASHE	/ /	/ /	AND A	There's	
Sample Identity		Lab No.	Time	Sampled		STR ST	*	Σ	<u>×</u>				1000	Rem	arks/Matrix
02452 WWTP			1545	3.7.16		X	\checkmark						i	Water	
02452 WWTP.	150	0A	1534	3.7. lb		X	V	\checkmark					1	11	
						$\left - \right $	<u> </u>								
						┝──╉									
					+										
						┝									
				····											
Project Inform	ation	Some	ole Receip						6-1 X					t en fill a series	
Project Number: 32-1-1	and the state of the state of the	Total Number of	Contraction of the state of the		Signatu	MY 24 3944		I Bý:		Relinqu	ISNED E		Signat	telinquis	hed By: 3
Project Name: WWT		COC Seals/Inta			Ľ	Z	12			-					· · · · · · · · · · · · · · · · · · ·
Contact: Kath Wed	eking	Received Goo	d Cond./Cold		Printed I			Date: 3/8	// <u>6</u> F	Printed Name:	Date	:	_ Printed	d Name:	Date:
Ongoing Project? Yes			od:		<u>Bre</u> Compar	nv:			C	Company:	/		Comp	anv:	
Sampler: Brenton L	uper	(attach shipping	bill, if any)		She	una	2 l	J:/sor	<u> </u>					/	
	100 C C C C C C C C C C C C C C C C C C	tructions			1	1.00.00	ved By:	and the state of the second	i-H	Receive	ed By:	2.	A	leceived.	By: 3.
Requested Turnaround T	rime: S	fandard			Signatur	e:	Т	ime:	S	Signature:	Time		Signat	ure:	Time: 10:09
Special Instructions:					Printed I	Name:		Date:	F	Printed Name:	Date		Printed	Name:	Date: 3/8//6
Level II							/							ory Du	nning
Distribution: White - w/shipm Yellow - w/shipm Pink - Shannon	ment - for	consignee files	lson w/ laborat	ory report	Compar	# ∮ :			C	Company:			Compa	^{any:} S(5

No.<u>13064</u>2

3.2#012

1161040

SAMPLE RECEIPT FORM

Review Criteria:	Yes	N/A	No	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable.	\checkmark			Exemption permitted if sampler hand carries/delivers.
COC accompanied samples?	$\mathbf{\nabla}$			1F
Temperature blank compliant* (i.e., 0-6°C after CF)?				Exemption permitted if chilled & collected <8 hrs ago.
If >6 °C, were samples collected <8 hours ago?	ЦЦ	\checkmark	Ц	
If $< 0 ^{\circ}$ C, were all sample containers ice free?		\checkmark		
Cooler ID:				
Cooler ID: @ w/ Therm.ID:				
Cooler ID:				
Cooler ID: (a) W/ Therm.ID:				
Cooler ID: @ w/ Therm.ID:				
If samples are received <u>without</u> a temperature blank, the "cooler temperature" will be documented in lieu of the temperature blank &				
"COOLER TEMP" will be noted to the right. In cases where neither a				Note: Identify containers received at non-compliant
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."				temperature. Use form FS-0029 if more space is needed.
Delivery method (specify all that apply): Client (hand carried)				
USPS Lynden AK Air Alert Courier				
\Box UPS \Box FedEx \Box RAVN \Box C&D Delivery				
Carlile Pen Air Warp Speed Other:				
\rightarrow For WO# with airbills, was the WO# & airbill				
info recorded in the Front Counter eLog?		\checkmark		
	3.7	NT/A	ЪŢ	
	Yes	N/A	No	
Were samples received within hold time?		Ц	Ц	Note: Refer to form F-083 "Sample Guide" for hold times. Note: If times differ <1hr, record details and login per COC.
Do samples match COC * (i.e., sample IDs, dates/times collected)?	$\mathbf{\nabla}$	Ц	Ц	Note. If times uffer star, record details and login per COC.
Were analyses requested unambiguous?		⊢⊢	\square	
Were samples in good condition (no leaks/cracks/breakage)?				
Packing material used (specify all that apply): Bubble Wrap				
Separate plastic bags Vermiculite Other:				Exemption permitted for metals (e.g., 200.8/6020A).
Were proper containers (type/mass/volume/preservative*) used?	H H	H	H	Exemption permitted for metals (e.g., 200.8/0020A).
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? Were all VOA vials free of headspace (i.e., bubbles ≤ 6 mm)?			H	
Were all soil VOAs field extracted with MeOH+BFB?			H	
For preserved waters (other than VOA vials, LL-Mercury or		V		
microbiological analyses), was pH verified and compliant ?				
If pH was adjusted, were bottles flagged (i.e., stickers)?		7	H	
For special handling (e.g., "MI" soils, foreign soils, lab filter for				
dissolved, lab extract for volatiles, Ref Lab, limited volume),				
were bottles/paperwork flagged (e.g., sticker)?		\checkmark	\square	
For RUSH/SHORT Hold Time , were COC/Bottles flagged				
accordingly? Was Rush/Short HT email sent, if applicable?	\checkmark			Nitrate+Nitrites
For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were				
containers / paperwork flagged accordingly?		\checkmark		
For any question answered "No," has the PM been notified and				SRF Completed by: K.W
the problem resolved (or paperwork put in their bin)?		\checkmark		PM notified:
Was PEER REVIEW of sample numbering/labeling completed?		\checkmark		Peer Reviewed by:
Additional notes (if applicable):				

Note to Client: Any "no" answer above indicates non-compliance with standard procedures and may impact data quality.

F102_eSRF_2015_03_31

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1161040001-A 1161040002-A	No Preservative Required No Preservative Required	ок ок			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

APPENDIX E

ANALYTICAL TEST RESULTS SUMMARY TABLE AND SGS RESULTS FOR SOIL TESTING

TABLE E-1 SUMMARY OF SOIL ANALYTICAL RESULTS

		Cleanup Level	Sample ID Number^ and Soil Sample Depth Feet bgs (See Figure 2 and Appendix A) Soil Samples B6S12 B8S4 B9S6 45 7.5 16				
Parameter Tested	Method*	(mg/kg)**	45	7.5	16		
RCRA Metals							
Arsenic - mg/kg	SW 6020	3.9	2.70	8.09	2.26		
Barium - mg/kg	SW 6020	1,100	29.0	147	53.5		
Cadmium - mg/kg	SW 6020	5	< 0.0990	0.0985 J	< 0.112		
Chromium - mg/kg	SW 6020	25	13.3	26.2 ¥	20.3		
Lead - mg/kg	SW 6020	400	1.79	7.63	2.98		
Mercury - mg/kg	SW 6020	1.4	0.0450	0.0565	0.0190 J		
Selenium - mg/kg	SW 6020	3.4	< 0.495	0.710 J	0.432 J		
Silver - mg/kg	SW 6020	11.2	< 0.0990	< 0.125	<0.112		

Notes:

J

* = See SGS Report included in this Appendix for compounds tested, methods, and laboratory reporting limits

** = Soil cleanup level is the most stringent ADEC Method 2 standard listed in Table B1, 18 AAC 75 (June 2015), for the "under 40 inches (precipitation) zone"

^ = Sample ID number preceded by "02452-" on the chain of custody form

RCRA = Resource Recovery and Conservation Act

mg/kg = Milligram per kilogram

<0.112 = Analyte not detected; laboratory limit of detection of 0.112 mg/kg

2.70 = Analyte detected

26.2 = Reported concentration exceeds the ADEC cleanup level

= Estimated concentration less than the limit of quantitation. See the SGS laboratory report for more details.

ppm = part per million

¥ = Analyte concentration is consistent with typical background concentrations in the Anchorage area.

Laboratory Report of Analysis

To: Shannon & Wilson, Inc. 5430 Fairbanks St. Suite 3 Anchorage, AK 99518 (907)561-2120

Report Number: 1152037

Client Project: 32-1-02452 WWTF Wasilla

Dear Katra Wedeking,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Victoria at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Victoria Pennick Project Manager Victoria.Pennick@sgs.com Date

Print Date: 05/31/2015 8:15:12AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Shannon & Wilson, Inc. SGS Project: 1152037 Project Name/Site: 32-1-02452 WWTF Wasilla Project Contact: Katra Wedeking

Refer to sample receipt form for information on sample condition.

1152205018(1266585MS) (1266586) MS

6020A - Metals - MS recoveries for àzéã { ÁÇ+GÍ Ã Dáe) å Á&@[{ ã { ÁÇ+GÍ Ã Dáe] å Á&@[{ ã { ÁÇ+GÍ Ã Dáe] (Å ^^ dù Ô criteria. Post digestion spike was successful.

1152205018(1266585MSD) (1266587) MSD

6020A - Metals - MSD recoveries for àælã { ÁÇ⊨Ì €Ã Daba) åÁ&@[{ ã { ÁÇFCÌ Ã Daba[Á][ơÁ ^^dÛÔ criteria. Post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 05/31/2015 8:15:13AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a trasaction from exercising all their rights adn obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the contect or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

- * The analyte has exceeded allowable regulatory or control limits.
- ! Surrogate out of control limits.
- B Indicates the analyte is found in a blank associated with the sample.
- CCV Continuing Calibration Verification
- CL Control Limit
- D The analyte concentration is the result of a dilution.
- DF Dilution Factor
- DL Detection Limit (i.e., maximum method detection limit)
- E The analyte result is above the calibrated range.
- F Indicates value that is greater than or equal to the DL
- GT Greater Than
- IB Instrument Blank
- ICV Initial Calibration Verification
- J The quantitation is an estimation.
- JL The analyte was positively identified, but the quantitation is a low estimation.
- LCS(D) Laboratory Control Spike (Duplicate)
- LOD Limit of Detection (i.e., 1/2 of the LOQ)
- LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)
- LT Less Than
- M A matrix effect was present.
- MB Method Blank
- MS(D) Matrix Spike (Duplicate)
- ND Indicates the analyte is not detected.
- Q QC parameter out of acceptance range.
- R Rejected
- RPD Relative Percent Difference
- U Indicates the analyte was analyzed for but not detected.
- Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 05/31/2015 8:15:14AM

SM21 2540G

Sample Summary										
Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>						
02452-B6S12	1152037001	05/08/2015	05/13/2015	Soil/Solid (dry weight)						
02452-B9S6	1152037002	05/08/2015	05/13/2015	Soil/Solid (dry weight)						
02452-B8S4	1152037003	05/11/2015	05/13/2015	Soil/Solid (dry weight)						
Method	Method Method Description									
SW6020A	Metals by IC	CP-MS (S)								

Percent Solids SM2540G

Print Date: 05/31/2015 8:15:16AM

	Detectable Results Sumr	nary		
Client Sample ID: 02452-B6S12				
Lab Sample ID: 1152037001	Parameter	Result	Units	
Metals by ICP/MS	Arsenic	2.70	mg/Kg	
	Barium	29.0	mg/Kg	
	Chromium	13.3	mg/Kg	
	Lead	1.79	mg/Kg	
	Mercury	0.0450	mg/Kg	
Client Sample ID: 02452-B9S6				
Lab Sample ID: 1152037002	Parameter	Result	Units	
Metals by ICP/MS	Arsenic	2.26	mg/Kg	
	Barium	53.5	mg/Kg	
	Chromium	20.3	mg/Kg	
	Lead	2.98	mg/Kg	
	Mercury	0.0190J	mg/Kg	
	Selenium	0.432J	mg/Kg	
Client Sample ID: 02452-B8S4				
Lab Sample ID: 1152037003	Parameter	Result	Units	
Metals by ICP/MS	Arsenic	<u>8.09</u>	mg/Kg	
	Barium	147	mg/Kg	
	Cadmium	0.0985J	mg/Kg	
	Chromium	26.2	mg/Kg	
	Lead	7.63	mg/Kg	
	Mercury	0.0565	mg/Kg	
	Selenium	0.710J	mg/Kg	
			5 5	

Print Date: 05/31/2015 8:15:17AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 02452-B6S12

Client Sample ID: 02452-B6S12 Client Project ID: 32-1-02452 WWTF Wasilla Lab Sample ID: 1152037001 Lab Project ID: 1152037 Collection Date: 05/08/15 12:55 Received Date: 05/13/15 11:48 Matrix: Soil/Solid (dry weight) Solids (%):93.1 Location:

Results by Metals by ICP/MS

			_			Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	2.70	0.990	0.307	mg/Kg	10		05/29/15 14:50
Barium	29.0	0.297	0.0930	mg/Kg	10		05/29/15 14:50
Cadmium	0.0990 U	0.198	0.0614	mg/Kg	10		05/29/15 14:50
Chromium	13.3	0.396	0.119	mg/Kg	10		05/29/15 14:50
Lead	1.79	0.198	0.0614	mg/Kg	10		05/29/15 14:50
Mercury	0.0450	0.0396	0.0119	mg/Kg	10		05/29/15 14:50
Selenium	0.495 U	0.990	0.307	mg/Kg	10		05/29/15 14:50
Silver	0.0990 U	0.198	0.0614	mg/Kg	10		05/29/15 14:50
Selenium	0.495 U	0.990	0.307	mg/Kg	10		05/29/15 14:5

Batch Information

Analytical Batch: MMS8933 Analytical Method: SW6020A Analyst: ACF Analytical Date/Time: 05/29/15 14:50 Container ID: 1152037001-A Prep Batch: MXX28691 Prep Method: SW3050B Prep Date/Time: 05/27/15 08:50 Prep Initial Wt./Vol.: 1.085 g Prep Extract Vol: 50 mL

Print Date: 05/31/2015 8:15:18AM

J flagging is activated

Results of 02452-B9S6

Client Sample ID: 02452-B9S6 Client Project ID: 32-1-02452 WWTF Wasilla Lab Sample ID: 1152037002 Lab Project ID: 1152037

Collection Date: 05/08/15 16:24 Received Date: 05/13/15 11:48 Matrix: Soil/Solid (dry weight) Solids (%):82.3 Location:

Results by Metals by ICP/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	2.26	1.12	0.347	mg/Kg	10		05/29/15 14:53
Barium	53.5	0.336	0.105	mg/Kg	10		05/29/15 14:53
Cadmium	0.112 U	0.224	0.0694	mg/Kg	10		05/29/15 14:53
Chromium	20.3	0.448	0.134	mg/Kg	10		05/29/15 14:53
Lead	2.98	0.224	0.0694	mg/Kg	10		05/29/15 14:53
Mercury	0.0190 J	0.0448	0.0134	mg/Kg	10		05/29/15 14:53
Selenium	0.432 J	1.12	0.347	mg/Kg	10		05/29/15 14:53
Silver	0.112 U	0.224	0.0694	mg/Kg	10		05/29/15 14:53

Batch Information

Analytical Batch: MMS8933 Analytical Method: SW6020A Analyst: ACF Analytical Date/Time: 05/29/15 14:53 Container ID: 1152037002-A Prep Batch: MXX28691 Prep Method: SW3050B Prep Date/Time: 05/27/15 08:50 Prep Initial Wt./Vol.: 1.086 g Prep Extract Vol: 50 mL

Print Date: 05/31/2015 8:15:18AM

J flagging is activated

Results of 02452-B8S4

Client Sample ID: 02452-B8S4 Client Project ID: 32-1-02452 WWTF Wasilla Lab Sample ID: 1152037003 Lab Project ID: 1152037

Collection Date: 05/11/15 14:55 Received Date: 05/13/15 11:48 Matrix: Soil/Solid (dry weight) Solids (%):79.0 Location:

Results by Metals by ICP/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	8.09	1.24	0.385	mg/Kg	10		05/29/15 14:55
Barium	147	0.373	0.117	mg/Kg	10		05/29/15 14:55
Cadmium	0.0985 J	0.249	0.0771	mg/Kg	10		05/29/15 14:55
Chromium	26.2	0.497	0.149	mg/Kg	10		05/29/15 14:55
Lead	7.63	0.249	0.0771	mg/Kg	10		05/29/15 14:55
Mercury	0.0565	0.0497	0.0149	mg/Kg	10		05/29/15 14:55
Selenium	0.710 J	1.24	0.385	mg/Kg	10		05/29/15 14:55
Silver	0.125 U	0.249	0.0771	mg/Kg	10		05/29/15 14:55

Batch Information

Analytical Batch: MMS8933 Analytical Method: SW6020A Analyst: ACF Analytical Date/Time: 05/29/15 14:55 Container ID: 1152037003-A Prep Batch: MXX28691 Prep Method: SW3050B Prep Date/Time: 05/27/15 08:50 Prep Initial Wt./Vol.: 1.018 g Prep Extract Vol: 50 mL

Print Date: 05/31/2015 8:15:18AM

Member of SGS Group

Method Blank

Blank ID: MB for HBN 1709656 [MXX/28691] Blank Lab ID: 1266583 Matrix: Soil/Solid (dry weight)

QC for Samples: 1152037001, 1152037002, 1152037003

Results by SW6020A

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/Kg
Barium	0.150U	0.300	0.0940	mg/Kg
Cadmium	0.100U	0.200	0.0620	mg/Kg
Chromium	0.200U	0.400	0.120	mg/Kg
Lead	0.100U	0.200	0.0620	mg/Kg
Mercury	0.0200U	0.0400	0.0120	mg/Kg
Selenium	0.500U	1.00	0.310	mg/Kg
Silver	0.100U	0.200	0.0620	mg/Kg

Batch Information

Analytical Batch: MMS8933 Analytical Method: SW6020A Instrument: Perkin Elmer Sciex ICP-MS P3 Analyst: ACF Analytical Date/Time: 5/29/2015 2:39:41PM Prep Batch: MXX28691 Prep Method: SW3050B Prep Date/Time: 5/27/2015 8:50:23AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Print Date: 05/31/2015 8:15:19AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1152037 [MXX28691] Blank Spike Lab ID: 1266584 Date Analyzed: 05/29/2015 14:42

Matrix: Soil/Solid (dry weight)

QC for Samples: 1152037001, 1152037002, 1152037003

Results by SW6020A

	E	Blank Spike	(mg/Kg)	
Parameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
Arsenic	50	50.0	100	(80-120)
Barium	50	50.2	100	(80-120)
Cadmium	5	5.11	102	(80-120)
Chromium	20	20.4	102	(80-120)
Lead	50	54.4	109	(80-120)
Mercury	0.5	0.516	103	(80-120)
Selenium	50	51.4	103	(80-120)
Silver	5	5.03	101	(80-120)

Batch Information

Analytical Batch: MMS8933 Analytical Method: SW6020A Instrument: Perkin Elmer Sciex ICP-MS P3 Analyst: ACF Prep Batch: MXX28691 Prep Method: SW3050B Prep Date/Time: 05/27/2015 08:50 Spike Init Wt./Vol.: 50 mg/Kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 05/31/2015 8:15:21AM

Matrix Spike Summary

Original Sample ID: 1266585 MS Sample ID: 1266586 MS MSD Sample ID: 1266587 MSD

QC for Samples: 1152037001, 1152037002, 1152037003

Results by SW6020A

		Matr	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>Parameter</u>	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Arsenic	2.81	46.7	51.9	105	47.5	54.8	109	80-120	5.42	(< 20)
Barium	60.8	46.7	213	325 *	47.5	241	380 *	80-120	12.50	(< 20)
Cadmium	0.0624J	4.67	4.87	103	4.75	5.02	104	80-120	3.12	(< 20)
Chromium	2.08	18.7	25.5	125 *	19.0	26.3	128 *	80-120	3.16	(< 20)
Lead	2.02	46.7	51.6	106	47.5	52.5	106	80-120	1.78	(< 20)
Mercury	0.0193U	0.467	.51	109	0.475	0.507	107	80-120	0.66	(< 20)
Selenium	0.483U	46.7	47.4	102	47.5	49.8	105	80-120	4.89	(< 20)
Silver	0.0965U	4.67	4.75	102	4.75	4.70	99	80-120	0.98	(< 20)

Batch Information

Analytical Batch: MMS8933 Analytical Method: SW6020A Instrument: Perkin Elmer Sciex ICP-MS P3 Analyst: ACF Analytical Date/Time: 5/29/2015 3:17:17PM

Prep Batch: MXX28691

Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 5/27/2015 8:50:23AM Prep Initial Wt./Vol.: 1.07g Prep Extract Vol: 50.00mL

Analysis Date: 05/29/2015 15:12

Analysis Date: 05/29/2015 15:17

Analysis Date: 05/29/2015 15:19 Matrix: Solid/Soil (Wet Weight)

Print Date: 05/31/2015 8:15:23AM

SGS North America Inc.

Bench Spike Summary

Original Sample ID: 1266585 MS Sample ID: 1266588 BND MSD Sample ID: Analysis Date: 05/29/2015 15:12 Analysis Date: 05/29/2015 15:22 Analysis Date: Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1152037001, 1152037002, 1152037003

		Mat	rix Spike (r	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>Parameter</u>	Sample	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Barium	60.8	242	318	106				80-120		
Chromium	2.08	121	133	108				80-120		
Batch Information Analytical Batch: MMS8933 Analytical Method: SW6020A Instrument: Perkin Elmer Sciex ICP-MS P3 Analyst: ACF Analytical Date/Time: 5/29/2015 3:22:00PM					Method: Date/Tin Initial W		ds Digest fo 015 8:50:2 3g		y ICP-MS	

Print Date: 05/31/2015 8:15:23AM

- Method Blank					
Blank ID: MB for HBN Blank Lab ID: 126492 QC for Samples:		Matrix	dry weight)		
1152037001, 11520370					
Results by SM21 2540 Parameter Total Solids	Results 100	LOQ/CL	<u>DL</u>	<u>Units</u> %	
Batch Information Analytical Batch: SP Analytical Method: S Instrument: Analyst: A.K Analytical Date/Time:					

Print Date: 05/31/2015 8:15:24AM

Duplicate Sample Summ	narv							
Original Sample ID: 1152027001 Duplicate Sample ID: 1264928 QC for Samples:			Analysis Date: 05/18/2015 22:27 Matrix: Soil/Solid (dry weight)					
Results by SM21 2540G								
NAME	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL			
Total Solids	93.9	92.9	%	1.10	(< 5)			
Batch Information								
Analytical Batch: SPT959 Analytical Method: SM21 Instrument: Analyst: A.K								

Print Date: 05/31/2015 8:15:25AM

SGS North America Inc.

Driginal Sample ID: 115 Duplicate Sample ID: 12 QC for Samples: 1152037001, 11520370	264929		Analysis Date: Matrix: Soil/So		
Results by SM21 2540G NAME	i <u>Original</u>	Duplicate	Units	<u>RPD (%)</u>	RPD CL
Total Solids	95.0	93.8	%	1.20	(< 5)
Analyst: A.K					

Print Date: 05/31/2015 8:15:25AM

Original Sample ID: 1152077010 Duplicate Sample ID: 1264930 QC for Samples: 1152037001, 1152037002, 1152037003			Analysis Date: 05/18/2015 22:27 Matrix: Soil/Solid (dry weight)				
Results by SM21 2540 0	G <u>Original</u>	Duplicate	Units	<u>RPD (%)</u>	RPD CL		
otal Solids	85.1	84.8	%	0.27	(< 5)		

Print Date: 05/31/2015 8:15:25AM

												4 1
Geotechnical and Enviro	VILSON, INC.	CI	HAIN-(OF-(CUST	rody	REC	ORD		Laboratory_	SGS Pag	geof
400 N. 34th Street, Suite 100 2043 V	Vestport Center Drive	2705 Saint	Andrews Loop,							Attn:	~;	
	uis, MO 63146-3564	Pasco, WA (509) 946-6	99301-3378				Analysis P	arameters	/Sample Cont	tainer Descrip	tion	
2355 Hill Road 5430 F Fairbanks, AK 99709 Anchor	airbanks Street, Suite 3 rage, AK 99518				_	115			preservative if	used)		7
(907) 479-0600 (907) 5	561-2120	-			//	N. S. C.	/	/	/ /		//	
Lake Oswego, OR 97035 Denver	annock Street, Suite 200 ; CO 80204)		/	///	*** /	/				IND IN BE	
(503) 223-6147 (303) 8 Sample Identity	25-3800 Lab No.	Time	Date Sampled	Com	CIA LINE	`/		/	/ /	1000	Sol Romor	
	() A		cololia	F L	1	- <u>(</u>	<u> </u>	<u> </u>	<u> </u>		So, 1	ks/Matrix
02452-B6512		1255	> 18/15								1,002	(45')
<u> </u>	2A QA	1624	5/8/15									(16')
V BBS4	3 A	1455	5/11/15							1		(7.5')
		<u> </u>		+			6					
				+								
	<u> </u>	<u></u>					<u> </u>					
Project Information	•	ple Receip			nquishe	ed By: Time: 124	1. F	inclusion and the state of the	shed By:	energy and the second	Relinquishe	Participation (Formal) - Harver and Annual State (1999) - Harver and Annual State (1999)
Project Number: 32-1-0245			·	Signature:	2/1 M	nme:	E Signa	ture:	Time:	Sign	ature:	Time:
Project Name: WWTF We Contact: Kyw RShan will c				Finited Na		Date: 05/12	3 Printe	d Name:	Date:	Printe	ed Name:	Date:
Ongoing Project? Yes No				Kyle (Jalk	•						
Sampler: Kew	(attach shipping	ı bill, if anv)			onsw	ilca	Comp	any:		Com	pany:	
	structions				eived By		1. F	Receive	d Bw	2	Received B	E 1945
Requested Turnaround Time:			s	Signature:	cived D	Time:	Signa	outs in work which we have a set of the set	Time:	Signa		
Special Instructions:	- freedar on			-		A		NAMES OF A DESCRIPTION OF			GRAIME	1143
mon QI Car Kosting 1	Madalian 1	un du		Printed Nar	ne:	Date:	Printe	d Name:	Date:	Printe	Name:	Date: 5/13/15
Distribution: White - w/shipment - ret	urned to Shannor & W	/ilson w/ labora	corv report	Company:			Comp	any:		Com	pahy:	jesten
Yellow - w/shipment - fo Pink - Shannon & Wilsor		· ·									SGS	
		10000000000000000000000000000000000000									1	<u></u>

Tenp. 2. 70/#203

F-19-91/UR

No.<u>130</u>531

1152037

SAMPLE RECEIPT FORM

Review Criteria:	Yes	N/A	No	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable.		\checkmark		Exemption permitted if sampler hand carries/delivers.
COC accompanied samples?	\checkmark			
Temperature blank compliant* (i.e., 0-6°C after CF)?	\checkmark			Exemption permitted if chilled & collected <8 hrs ago.
If >6 °C, were samples collected <8 hours ago?				
If <0 °C, were all sample containers ice free?				
Cooler ID:				
Cooler ID: @ w/ Therm.ID:				
Cooler ID: @w/ Therm.ID:				
Cooler ID: (a) w/ Therm.ID:				
Cooler ID: @ w/ Therm.ID:				
If samples are received without a temperature blank, the "cooler				
temperature" will be documented in lieu of the temperature blank &				
"COOLER TEMP" will be noted to the right. In cases where neither a				Note: Identify containers received at non-compliant temperature. Use form FS-0029 if more space is needed.
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."				temperature. Use form FS-0029 if more space is needed.
Delivery method (specify all that apply):				
USPS Lynden AK Air Alert Courier				
$\Box UPS \qquad \Box FedEx \qquad \Box RAVN \qquad \Box C\&D Delivery$				
Carlile Pen Air Warp Speed Other:				
\rightarrow For WO# with airbills, was the WO# & airbill				
info recorded in the Front Counter eLog?		\checkmark		
	Yes	N/A	No	
		IN/A		Notes Defen to form E 002 "Counts Cuide" for hold times
Were samples received within hold time?		Н	Н	Note: Refer to form F-083 "Sample Guide" for hold times. Note: If times differ <1hr, record details and login per COC.
Do samples match COC * (i.e., sample IDs, dates/times collected)?		Н	Н	
Were analyses requested unambiguous?			┝┥	
Were samples in good condition (no leaks/cracks/breakage)?				
Packing material used (specify all that apply): Bubble Wrap				
Separate plastic bags Vermiculite Other:				
Were proper containers (type/mass/volume/preservative*) used?			Н	<i>Exemption permitted for metals (e.g., 200.8/6020A).</i>
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?			Н	
Were all VOA vials free of headspace (i.e., bubbles ≤ 6 mm)?			Н	
Were all soil VOAs field extracted with MeOH+BFB?				
For preserved waters (other than VOA vials, LL-Mercury or				
microbiological analyses), was pH verified and compliant ?			H	
If pH was adjusted, were bottles flagged (i.e., stickers)?				
For special handling (e.g., "MI" soils, foreign soils, lab filter for				
dissolved, lab extract for volatiles, Ref Lab, limited volume),				
were bottles/paperwork flagged (e.g., sticker)?		\checkmark		
For RUSH/SHORT Hold Time , were COC/Bottles flagged				
accordingly? Was Rush/Short HT email sent, if applicable?		\checkmark		
For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were			_	
containers / paperwork flagged accordingly?		\checkmark		
For any question answered "No," has the PM been notified and				SRF Completed by: VLP
the problem resolved (or paperwork put in their bin)?		\checkmark		PM notified:
Was PEER REVIEW of <i>sample numbering/labeling completed</i> ?				Peer Reviewed by:
Additional notes (if applicable):				
Confirmed Open Qt for Katra W, per Katra 5/14/15				

Note to Client: Any "no" answer above indicates non-compliance with standard procedures and may impact data quality.

Sample Containers and Preservatives

Container Id	Preservative	Container Condition	Container Id	Preservative	Container Condition
1152037001-A	No Preservative Required	OK			
1152037002-A	No Preservative Required	OK			
1152037003-A	No Preservative Required	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added. PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

BU - The container was received with headspace greater than 6mm.

APPENDIX F

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to 32-1-02452

To: Stantec Re: Wastewater Treatment Plant Improvements, Wasilla, Alaska

Important Information About Your Geotechnical/Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors, which were considered in the development of the report, have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

APPENDIX C

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

32-1-02452-003

Date: June 2018

To:

Stantec Wastewater Treatment Plant Improvements Additional Wells, Wasilla, Alaska

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimation always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland